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Abstract: Recently, deep learning based techniques have garnered significant interest
and popularity in a variety of fields of research due to their effectiveness in search for
an optimal solution given a finite amount of data. However, the optimization of these
networks has become more challenging as neural networks become deeper and datasets
growing larger. The choice of the algorithm to optimize a neural network is one of the
most important steps in model design and training in order to obtain a model that will
generalize well on new, previously unseen data.  In deep learning, adaptive gradient
optimization methods are mostly preferred for supervised and unsupervised tasks. First,
they accelerate the training of neural  networks and since mini batches are  selected
randomly and are independent, an unbiased estimate of the expected gradient can be
computed.  This  paper  examined  six  state-of-the-art  adaptive  gradient  optimization
algorithms, namely, AdaMax, AdaGrad, AdaDelta, RMSProp, Nadam, and Adam on
the generalization performance of convolutional neural networks (CNN) architecture
that are extensively used in computer vision tasks. Experiments were conducted giving
comparative analysis on the behaviour of these algorithms during model training on
three large image datasets, namely, Fashion-MNIST, Kaggle Flowers Recognition and
Scene classification. The results show that Adam, Adadelta and Nadam finds the global
minimum faster in the experiments, have a better convergence curve, and higher test
set accuracy in experiments using the three datasets. These optimization approaches
adaptively tune the learning rate based only on the recent gradients; thus, controlling
the reliance of the update on the past few gradients.

Keywords:  Adaptive  gradient  methods;  optimization;  deep  learning;  convolutional
neural networks; image processing.

1. Introduction
The design goal of any machine learning classifier and any learning algorithm in general,
based  on  a  training  set  of  a  finite  size,  is  to  ultimately  provide  a  good  generalization
performance (Theodoridis,  2020). The  generalization  performance  is  quantified  by  the
difference  between  the  training  error  and  the  test  error  where  good  machine  learning
algorithms are those where the test  error and the training error have close values (Hu &
Zheng, 2019). Recently, deep learning algorithms have shown to have better generalization
performance than traditional machine learning techniques in solving classification problems.
However, explaining why these highly non-convex models trained by a specific optimization
algorithm can generalize  better  has  become a  significant  open question  in  deep learning
(Wang, Meng, Chen, & Liu, 2021).
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In  the  literature,  different  approaches  have  been  employed  to  improve  on  the
generalization performance of neural networks. Among these approaches, some explore the
implicit  regularization  property  of  Stochastic  Gradient  Descent  (SGD)  (Hardt,  Recht,  &
Singer,  2016;  Zhang,  Bengio,  Hardt,  Recht,  &  Vinyals,  2017);  Neyshabur,  Tomioka,
Salakhutdinov, & Srebro, 2017). Another perspective relies on the geometry of loss function
around a global minimum with the work of  Keskar, Mudigere, Nocedal, Smelyanskiy, and
Tang (2017) adopting this perspective to explain why small-batch SGD often converges to
the solution generalizing better than large-batch SGD similar to the work of (Baldassi, et al.,
2016) where discrete networks were considered. 

Optimization  is  a  significant  component  in  deep  learning.  Optimization  provides  an
approach  to  minimizing  the  loss  function,  often  referred  to  as  the  objective  function  in
stochastic nonconvex optimization (Kingma & Ba, 2015). Optimization considers different
methods and algorithms used for learning the underlying mapping from input data to outputs
by choosing the  right  set  of  parameters  that  will  reduce  the  error  during  model  training
(Marin, Skelin, & Grujic, 2019). Through optimization, researchers seek to find a suitable
model,  which  will  generalize  well  on  new,  previously  unseen  data.  Stochastic  gradient
descent (SGD) with mini-batches and its variant are undoubtedly the most prevalent methods
for training deep neural networks, owing to its simplicity and greater performance than the
alternatives (Wang  &  Srebro,  2019).  For  instance,  the  use  of  minibatch  optimization
algorithms makes the training  process  more stable  as  it  reduces  the variance  of  gradient
estimate. These algorithms take smaller number of updates if a larger mini-batch size is used.
Moreover,  the  backpropagation  procedure  on  a  larger  mini-batch  can  utilize  massive
parallelization of linear algebra routines provided by advanced computational hardware such
as graphical processing units and clusters (Hu & Zheng, 2019). 

Stochastic  optimization  methods  are  the  dominant  techniques  in  the  training  of  deep
neural  networks.  In  this  paper,  we  explore  the  commonly  used  adaptive  optimization
algorithms and conduct empirical analysis of their effect on the training process and the final
generalization  performance  of  deep  learning  models.  In  particular,  convolutional  neural
networks (CNNs) are considered. Convolutional neural networks are one of the popular deep
learning models that have a wide range of applications in the field of computer vision. A
comparative analysis on the validation accuracy, as well as the model loss (train and test) of
each optimization algorithm in the generation of an optimization solution is done using three
large image datasets, namely, Fashion MNIST, Kaggle Flowers and Scene classification. 

The rest of the paper is structured as follows. Section 2 defines the problem statement
giving clarity to the thrust of our paper. Section 3 highlights the objectives of the study and
section 4 review literature on the concept of optimization, gives a theoretical background on
nonconvex stochastic optimization with a focus on adaptive optimization algorithms used for
training  deep  neural  networks  and  highlights  optimization  challenges  in  deep  learning.
Section 5 describes the methodology used. Section 6 provides the results and discussion on
the  comparative  analysis  of  the  different  adaptive  optimization  algorithms  on  the  image
classification problem on the training process and generalization performance. In section 7,
conclusion is made and in section 8, recommendations for future work are provided. 

2. Problem Statement
Optimizing neural networks has become more challenging as the neural networks become
deeper  and  datasets  growing  larger (Marin,  Skelin,  &  Grujic,  2019). The  well-known
challenges  in  training  deep  neural  networks  are  local  minima,  saddle  points  and  the
explosion/vanishing gradient attributable to the concatenation of many layers (Tan & Lim,
2019). During network training, an optimization algorithm iteratively steps across the search
space, updating the weights. The algorithm seeks possible values for the model in order to
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obtain a set of weights that results in good performance. The choice of the best algorithm to
optimize the neural network is one of the most important steps in model design and training
so as to obtain a model that will generalize well on new, previously unseen data. Adaptive
optimization  methods  such  as  AdaGrad,  RMSProp  and  Adam  are  mostly  preferred  for
supervised and unsupervised learning tasks (Reddi, Zaheer, Sachan, Kale, & Kumar, 2018;
Liang, Ma, & Li, 2020). Numerous works have provided empirical evidence that adaptive
optimization  methods  may  suffer  from  poor  generalization  performance   (Wang,  Meng,
Chen,  &  Liu,  2021).  However,  empirical  evaluation  on  the  generalization  of  adaptive
optimization algorithms is still lacking. Additionally, adaptive methods have been studied in
the convex settings but their analysis in the non-convex settings is still in the nascent stages
(Duchi, Hazan, & Singer, 2011; Li, Zhao, Arora, Liu, & Haupt, 2016). 

3. Objectives
The  main  objective  of  this  paper  is  to  present  an  empirical  evaluation  of  adaptive
optimization on the generalization performance of CNNs. The specific objectives are:

(a) To review literature on the adaptive optimization approaches employed to improve on
the generalization performance of deep learning networks. 

(b) To analyse the impact of adaptive optimization on the generalization performance of
convolutional neural networks

(c) To determine the best optimization algorithms that can be used to obtain a model that
will generalize well on new, previously unseen data.

4. Literature Review
The  crux  of  machine  learning  algorithms  is  to  develop  an  optimized  model  capable  of
learning the parameters in the objective function and the constraints placed from the given
dataset.  Several  effective  optimization  methods  have  been  put  forward  to  stimulate
development of machine learning, consequently improving their performance and efficiency
(Shone, Ngoc, Phai, & Shi, 2018).  According to Zhou (2018), majority of neural network
applications  are  naturally  formulated  as  non-convex  optimization  due  to  the  complex
mechanism of  the  underlying  model.  In  addition,  neural  networks  have  many symmetric
configurations such as exchanging intermediate neurons, hence non-convex. 

With the increasing interest  in deep learning applications,  researchers  have deemed it
necessary to deal with non-convex optimization progressively, more particularly because of
the benefits hidden behind their complexity. By definition, a non-convex optimization is any
problem where the objective or any of the constraints are non-convex (Jain & Kar, 2017)
predominantly because such algorithms operate in high-dimensional spaces. The freedom to
express  the  learning  problem  as  a  non-convex  optimization  problem  gives  immense
modelling power to the algorithm designer (Mehdi, 2020).

Training a deep neural network can be described as an optimization problem with non-
convex objective function. The non-convex deep neural networks have been found to have
large amount of global minima (Choromanska,  Henaff, Mathieu,  Arous,  & LeCun,  2015)
with only a few able to guarantee satisfactory generalization property (Brutzkus, Globerson,
Malach,  &  Shalev-Shwartz,  2018).  During  the  training  process,  model  parameters  are
iteratively updated in order to reduce the cost on the training data. Optimization methods are
used to optimize noisy functions, i.e., track key parameters of interest in data streams, which
can have changing dynamics over time. Stochastic methods are mainly employed in non-
convex problems where robust results have been demonstrated (Reddi, et al., 2016; Jain &
Kar, 2017; Mehdi, 2020). The adaptive nature of stochastic approximation methods such as
stochastic  gradient  descent  make  them  highly  applicable  in  a  range  of  applications,
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particularly in machine learning (Reddi,  Zaheer,  Sachan, Kale,  & Kumar,  2018).  Various
optimization algorithms exist in the literature for training neural networks and they vary in
the way they update network parameters. 

4.1 Nonconvex Stochastic Optimization

The literature on stochastic optimization is vast. In this work, the stochastic gradient descent
and its variant for smooth non-convex problems are analysed by (Ghadimi, Lan, & Zhang,
2016).  According  to  Huang  and  Chen  (2019),  stochastic  gradient  descent  is  an  efficient
method for solving the following optimization problem, which is fundamental to machine
learning,

Eq. (1)

min
x∈ Rd

f (x )+g ( x )

Where  f ( x )=1
n∑i=1

n

f i ( x ) indicates  the loss  function,  and  g ( x )denotes  the  regularization

function.  However,  when  sample  size  n is  large,  even  the  model  optimization  becomes
computationally burdensome. This is because SGD computes gradient of one sample instead
of all samples in each iteration, and therefore it has only per-iteration complexity of O (d ) .

Moreover, regardless of its scalability, stochastic gradient is much noisier than the batch
gradient  due to  the existence  of  variance  in  stochastic  process (Ghadimi,  Lan,  & Zhang,
2016). Recently, adaptive gradient optimization algorithms have successfully been applied to
reduce  this  variance.  They  adaptively  tune  the  learning  rate  based  only  on  the  recent
gradients;  thus  controlling  the  reliance  of  the  update  on  the  past  few  gradients.  These
algorithms leverage the curvature of the objective function that yields adaptive coordinate-
wise learning rates, which leads to faster model convergence (Zhou, Karimi, Yu, Xu, & Li,
2020). The following section discusses the adaptive optimization techniques. 

4.2 Adaptive Optimization Algorithms

In deep learning, training a model is computationally expensive, exhibits slow convergence,
and normally takes plenty of time. Numerous optimization algorithms are increasingly being
developed that produce the adaptive learning rate factor by global estimation of the gradient
(Liu, Feng, Li, Wang, & Wu, 2021). Researchers become drained with setting up the learning
rates in an effort to optimize the models. Hence, the adaptive optimization techniques were
developed. 

Adaptive optimization techniques do not require setting the learning rate since they are
dynamically adjusted during model training (Liang, Ma, & Li, 2020). Researchers  need to
initialize the learning rate parameters and the adaptive optimization algorithms keep updating
learning rates  during model  training (Reddi,  et  al.,  2018).  The fundamental  issue for  the
success of adaptive optimization algorithms is to design better conditioners of the gradient
(Wang,  Meng,  Chen,  & Liu,  2021).  The  following  six  adaptive  optimization  techniques
namely, AdaGrad, RMSProp, AdaDelta, Adam, AdaMax and Nadam algorithms described in
the literature are considered. These algorithms have been successfully employed in a plethora
of applications, achieving status of the art results (Reddi, et al., 2018). 
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4.2.1 Adagrad Optimizer
AdaGrad (Duchi,  Hazan,  &  Singer,  2011) is  the  first  algorithm  designed  that  can
independently adapt to the learning rate of all hyperparameters. Adagrad works on setting the
learning rate by dividing the learning rate component by the square root of the cumulative
sum of the current gradient and the previous gradient. In other words, Adagrad calculates the
step size for each parameter by first summing the partial derivatives for the parameter seen so
far during the search, then dividing the initial step size hyperparameter by the square root of
the sum of the squared partial derivatives. According to  (Liang, Ma, & Li, 2020) the main
weakness of Adagrad is that the continuous accumulation of past gradients will make the
learning rate very small, which will lead to the inability to effectively update the parameters,
and will be difficult to obtain useful information.

4.2.2 RMSProp
Root Mean Squared Propagation (RMSProp) (Hinton,  Srivastava,  & Swersky,  2012) was
proposed to achieve a rapid training process with an element-wise scaling term on learning
rates.  The  technique  tries  to  resolve  the  problem  that  gradients  may  vary  widely  in
magnitudes. The method uses a decaying average of partial gradients in the adaptation of the
step size for each parameter. In this way, the method focus is on the most recently observed
partial  gradients  seen  during  the  progress  of  the  search,  overcoming  the  limitation  of
AdaGrad method. 

4.2.3 Adadelta Optimizer 
Adadelta (Zeiler, 2012) works on exponential moving averages of the squared delta’s. Delta
refers to the difference between the current weight and the newly updated weight. Adadelta
optimizer uses momentum techniques to deal with the monotonically decreasing learning rate
problem. The technique removes the learning rate parameter and replaces it with delta. This
leads to the learning rate being more stable, and the algorithm overall becomes more robust. 

4.2.4 Adam 
The  Adaptive  Momentum  (Adam)  optimization  technique  proposed  by Kingma  and  Ba
(2015) is  the most  popular  method used in for  optimizing  many neural  network models.
Adam is a combination of RMSprop and momentum, that uses the squared gradient to scale
the learning rate parameters like RMSprop and it works similar to the momentum by adding
averages of moving gradients. It computes different parameters for individual parameters.

4.2.5 AdaMax
AdaMax (Luo, Xiong, Liu, & Sun, 2018) is variant of Adam that uses dynamic boundaries of
learning rates. AdaMax is as fast as Adam and uses an exponentially weighted infinity norm
instead of the second-order moment estimate (Yi, Ahn, & Ji, 2020) when scaling gradient. 

4.2.6 NADAM
The Nesterov-accelerated Adaptive Moment Estimation (Nadam) is a blend of Adam and
Nesterov accelerated algorithms. The idea behind this type of algorithm is to increase and
decrease the decay factor  β over time. A series of parameters  β1 , β2 ,…, β t corresponding
respectively to steps  1 ,2 ,…, t  is considered for better clarity (Mustapha, Mohamed, & Ali,
2021). The application of the momentum step in step t+1 is applied once updating the step t
as an alternative oft+1. 

4.3 Optimization Challenges in Deep Learning

Numerical optimization methods systematically vary the inputs to a function so as to realize
the  minimum  or  maximum  value  of  the  function.  Normally,  this  requires  numerous
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evaluations of the objective function (Fike, Jongsma, Alonso, & Weide, 2011). Optimization
methods that utilize gradient information usually converge to the optimal solution in fewer
iterations than methods that only rely on the function values and tends to drive parameters to
certain kinds of global minima, which generalize well. However, optimization of deep neural
networks comes with some challenges (Marin, Skelin, & Grujic, 2019). In the literature, the
most vexing ones are local minima, saddle points, and vanishing gradients. 

4.3.1 Local Minima
The convergence of the optimization algorithm should be ensured to avoid falling into local
optimum (Hu & Zheng,  2019).  Researchers  have  empirically  demonstrated  that  different
local  optima,  attained  from training  deep neural  networks  do not  generalize  in  a  similar
manner for the unseen data sets, albeit achieving similar training loss (Wang, Keskar, Xiong,
& Socher, 2018). Figure 1 shows local minima in deep learning training.

Figure 1: Local Minima in non-convex functions (Source: (MyRank, 2018))

Experiments conducted with different batch sizes showed that sharp minima do correlate
with higher generalization error.  According to  Keskar,  et al.  (2017) and  Chaudhari,  et  al.
(2019), the generalization ability of a model is associated with the spectrum of the Hessian
matrix (Fike, Jongsma, Alonso, & Weide, 2011), a square matrix that sort out all the second
partial  derivatives  of  a  given  multivariable  function,  evaluated  at  the  solution.  Large
eigenvalues of the hessian matrix often leads to poor model generalization (Wang, Keskar,
Xiong, & Socher, 2018). 

Give the objective functionf ( x ), if the value of f ( x ), at x is smaller than the values of f ( x ),
at any other points in the vicinity of  x, then f ( x ) could be a local minimum. On the other
hand,  if  the  value  off ( x ),  at x is  the  minimum of  the  objective  function  over  the  entire
domain, then f ( x ) is the global minimum.

4.3.2 Saddle Points
A saddle point is any location where all gradients of a function vanish but which is neither a
global nor a local minimum.  Saddle points in higher dimensions problems are even more
insidious since the likelihood that at least some the eigenvalues of the function’s Hessian
matrix are negative is quite high (Dauphin, et al., 2014). Figure 2 demonstrates sandle points
in non-convex functions. 

6



Proceedings of the Kabarak University International Conference On Computing And 
Information Systems, 4th - 8th October 2021 Nakuru, Kenya. 

Figure 2: Saddle points in non-
convex functions (source: (Zadeh, 2016))

Such saddle points are surrounded by high error plateaus that can dramatically slow down
learning,  and give  the illusive  impression of  the  existence  of  a  local  minimum (Jin,  Ge,
Netrapalli,  Kakade,  &  Jordan,  2017). Previous  works  elucidates  why  gradient  descent
optimization avoids saddle points in the non-convex settings. For instance,  (Dauphin, et al.,
2014) proposed a saddle-free Newton method that scales gradients by the absolute value of
the inverse Hessian.  Their  work demonstrated that near saddle points, they could achieve
rapid escape by combining the best of gradient descent and Newton methods while avoiding
the pitfalls of both.

4.3.3 Vanishing Gradients 
The vanishing gradient  is  the  most  insidious  problem encountered  in  deep learning.  The
problem is  mostly  encountered  when training  deep learning  models  using  gradient-based
learning methods and backpropagation (Tan & Lim, 2019). As more layers using certain
activation  functions  are  added  to  a  neural  network,  the  gradients  of  the  loss  function
approaches zero, making the network hard to train (Wang C.-F. , 2019). Figure 3 shows the
vanishing gradient  problem in training deep neural networks using the sigmoid activation
function. 

Figure 3: Vanishing gradient problem (Source: (Khan, 2020))
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The idea is that the calculated partial derivatives is used to compute the gradient as one
goes deeper into the neural network. Since the gradients control how much the network learns
during training, if the gradients are very small or zero, then little to no training can take place,
leading to poor predictive performance. In the literature, Rectified linear units (ReLUs) have
been proposed for use during model training as they suffer less from the vanishing gradient
problem  compared  to  sigmoidal  activation  functions  that  are  known  to  saturate  in  both
directions (Brownlee, 2019). 

5. Materials and Methods
This section presents the experimental design of the study. The setup and settings used in the
experiments,  the  deep  learning  architecture  used,  the  hyper-parameter  setting,  and  the
datasets used are described. 

5.1 Experiments

The aim of this experimental study was to compare the effect of adaptive optimizers on the
training process and final generalization performance of classification models. Convolutional
neural networks, deep learning architectures were train on three datasets. For implementation,
a simulation experiment environment  (Vieira, Koch, Sobral, Westphall,  & de Souza Leao,
2019) was built on a 64-bit computer based on Win10 operating system platform with Intel®
i7-9750 Hz 2.60 GHz CPU, 8 GB RAM, NVIDIA GeForce RTX 2060 6G GDDR6 GPU, and
10.2 CUDA. The experiments  were written  in  Python language  and the  Scikit-learn  and
NumPy were  used  for  data  pre-processing.  The  neural  networks  was  built  based  on the
Tensorflow and Keras deep learning frameworks. 

5.2 CNN Model Architectures

The network architecture plays a critical role in the performance of deep learning models. In
this study, two well-known CNN model architectures were considered and further fine-tuned
to ensure effective training process (Gong, Wang, Guo, & Lazebnik, 2014). The output layer
for each model was fine-tuned to reflect the classification output expected from the chosen
dataset. Model 1 architecture was based on the VGG-16 architecture developed by the Visual
Geometry Group from the University of Oxford in 2014. VGG-16 (Simonyan & Zisserman,
2014) served as the mainstream CNN model for feature representation and classification and
was used to win the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2014.

The architecture consists of 16 layers, where convolutional layers (13) with 3x3 filters
and 2x2 max pooling layers are stacked and dense layers incorporated before the output layer.
The model contains a set of weights that are used to train the images. Table 1 shows the
summary of the fine-tuned VGG-16 model that was used to train on the Kaggle Flowers
recognition dataset. 

Table 1: Architecture of the fine-tuned VGG-16 CNN Model

Model: "sequential_1"
_________________________________________________________________
Layer (type)                 Output Shape              Param #
==========================================================
conv2d_1 (Conv2D)            (None, 224, 224, 32)      896
_________________________________________________________________
conv2d_2 (Conv2D)           (None, 224, 224, 64)      18496
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 112, 112, 64)      0
_________________________________________________________________
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dropout_1 (Dropout)         (None, 112, 112, 64)       0
_________________________________________________________________
conv2d_3 (Conv2D) (None, 112, 112, 128)     73856
_________________________________________________________________
conv2d_4 (Conv2D) (None, 110, 110, 256)     295168
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 36, 36, 256)       0
_________________________________________________________________
dropout_2 (Dropout)          (None, 36, 36, 256)       0
_________________________________________________________________
flatten_1 (Flatten)          (None, 331776)            0
_________________________________________________________________
dense_1 (Dense)              (None, 256)               84934912
_________________________________________________________________
re_lu_1 (ReLU)               (None, 256)               0
_________________________________________________________________
dropout_3 (Dropout)          (None, 256)               0
_________________________________________________________________
dense_2 (Dense)              (None, 256)               65792
_________________________________________________________________
re_lu_2 (ReLU)               (None, 256)               0
_________________________________________________________________
dense_3 (Dense)              (None, 5)                 1285
==========================================================
Total params: 85,390,405
Trainable params: 85,390,405
Non-trainable params: 0

_________________________________________________________________
Model  2  architecture,  AlexNet,  won  the  ImageNet  large-scale  visual  recognition

challenge in 2012 (Krizhevsky, Sutskever, & Hinton, 2012). The architecture is  capable of
achieving  high  accuracies  on  very  challenging  datasets.  AlexNet  has  eight  layers  with
learnable parameters comprising of 5 convolution layers with a combination of max-pooling
layers and 3 fully connected layers. The model has an image input image of size 227×227x3.
Images need to be converted to 227×227x3 before using it for training the network. If the
input image is grayscale, it is converted to an RGB image by replicating the single channel to
obtain a 3-channel RGB image. The authors introduced padding to prevent the size of the
feature maps from reducing drastically. Table 2 shows the architecture of AlexNet.  

Table 2: Architecture of the fine-tuned AlexNet Model

Layer Size of Feature
Map

#filters
or

neurons

Filter Size Stride Padding Activation

Input 227x227x3 - - - - -
Convolution 1 55x55x96 96 11x11 4 - relu 
Maxpooling 1 27x27x96 - 3x3 2 - -
Convolution 2 27x27x256 256 5x5 1 2 relu
Maxpooling 2 13x13x256 - 3x3 2 - -
Convolution 3 13x13x384 384 3x3 1 1 relu
Convolution 4 13x13x384 384 3x3 1 1 relu
Convolution 5 13x13x256 256 3x3 1 1 relu
Max pooling 3 6x6x256 - 3x3 2 - -

Dropout 1 6x6x256 rate=0.5 - - - -
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5.3 Hyperparameter settings

The  definitive  solution  of  the  gradient  descent  optimization  algorithms  substantially  is
contingent  on  the  choice  of  the  hyperparameters (Liang,  Ma,  &  Li,  2020).  The
hyperparameters of optimizers used for training each model on the three datasets are shown
in table 3 which are recommended in practice (Kingma & Ba, 2015) and employs a highly
tuned learning rate schedule. 

Table 3: Hyperparameters for Adaptive Optimizers

Optimizer CNN Model 1 CNN Model 2 
Adagrad lr = 0.05,ϵ=10−7 lr = 0.05,ϵ=10−7
Adam lr = 0.0005, β1=0.9,

β2=0.999 , ϵ=10−7
lr = 0.0005, β1=0.9,
β2=0.999 , ϵ=10−7

Adadelta lr = 0.0001, β1=0.9,
β2=0.999 , ϵ=10−7

lr = 0.0001, β1=0.9,
β2=0.999 , ϵ=10−7

Nadam lr = 0.001, β1=0.9,
β2=0.999 , ϵ=10−7

lr = 0.001, β1=0.9,
β2=0.999 , ϵ=10−7

AdaMax lr = 0.001, β1=0.9,
β2=0.999 , ϵ=10−7

lr = 0.001, β1=0.9,
β2=0.999 , ϵ=10−7

RMSProp lr = 0.001, ρ=0.9,
 ϵ=10−7

lr = 0.0001, ρ=0.9,
 ϵ=10−7

The study used 50 epochs for model training while the grid search method was used to
tune the step size for each optimizer. The models were trained with mini-batches of size 40.
All the experiments utilized the ReduceLRonPlateau schedule with patience of 8 epochs and
a decay factor of 0.5. 

5.4 Datasets

In  this  study,  three  large  image  datasets,  namely,  MNIST,  Kaggle  Flowers  and  Scene
classification were used. The original training data were split into two parts: training data and
validation data, where 30% of original training data were used for validation and the rest for
training. 

5.4.1  Fashion-MNIST Dataset
Fashion-MNIST  (Xiao,  Rasul,  & Vollgraf,  2017) dataset  comprises  of  70,000  of  28X28
grayscale images of fashion products (clothes and shoes) from 10 different categories.

5.4.2 Kaggle Flowers Recognition Dataset 
This dataset contains 4,242 images of labelled flowers. The pictures are divided into five
classes:  daisy,  tulip,  rose,  sunflower  and  dandelion.  For  each  class,  there  are  about  800
photos. Photos are not in high resolution, 320x240 pixels.

5.4.3 Scene Classification Dataset
The 15 Scene classification dataset (Lazebnik, Schmid, & Ponce, 2006), is a popular dataset
with 15 natural and indoor categories. The categories include office, kitchen, living room,
bedroom, store,  industrial,  tall  building,  inside city,  street,  highway,  coast,  open country,
mountain, forest, and suburb. The dataset contains 4,485 images, whose average image size is
300×250 pixels. The main sources of the pictures include the COREL collection, personal
photographs, and Google image search. The objective is to classifying a scene image into one
of the predefined scene categories by comprehending the entire image. 
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6. Results and Discussion 
Training the deep learning models simply meant determining good values for all the weights
and the bias from the labelled examples. The goal is to find a set of weights and biases that
have low loss, on average, across all examples. Adaptive gradient methods widely used in
deep learning, namely,  AdaGrad, RMSProp, AdaDelta,  Adam, AdaMax and Nadam were
used to adapt weights and learning rate of the networks, thus reduce the losses and provide
the most accurate results possible. 

The observations regarding the influence of the adaptive optimization algorithms used on
the  behaviour  and final  generalization  performance  of  the  CNN model  are  based  on the
empirical evaluations on the two CNN model architectures, each trained on the three datasets.
Figure 4 shows the loss and training accuracy of the CNN model 1 using the Adam optimizer
on the Scene classification dataset after training the model using the Scene dataset. 

Figure 4: Loss and Accuracy for CNN Model 1 using Adam optimizer on the Scene recognition dataset

From the results, it can be seen that the models performed very well since the training
loss and the testing loss were very close.  The loss function is used to optimize the deep
learning algorithm.  The loss  is  calculated  on both the  training  and validation  set  and its
interpretation is based on how well the model is performing on these two sets. The model loss
is the sum of errors made for each example in training or validation sets. The loss value
implies how poorly or well a model behaves after each iteration of optimization. Figure 5
presents the CNN model 2 loss and training accuracy optimized using the Adadelta algorithm
on the Fashion-MNIST dataset. 
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Figure 5: Loss and Accuracy for CNN Model 2 based on Adadelta optimizer on Fashion-MNIST dataset

The accuracy metric is used to measure the algorithm’s performance in an interpretable
way.  Accuracy  of  each  model  was  determined  after  the  model  parameters  were  fully
optimized and calculated in the form of a percentage. Accuracy is the measure of how perfect
the model's  prediction is  compared to the true data.  In the study, the validation loss and
classification accuracy result were compared based on the different optimization algorithms.
The results are presented over the Fashion-MNIST, Kaggle Flowers Recognition and Scene
Classification datasets. The final results are reported in Tables 4, 5 and 6.

Table 4: Performance of the models trained using the different optimization algorithms on Fashion-MNIST
dataset.

CNN Model 1 CNN Model 2

Optimization
method

Loss
Train 

set 
Test
set

 Accuracy
(%)

Train set Test set 

Loss 
Train set Test set 

Accuracy
(%)

Train set  Test set  

Adamax 0.759 0.920 95.81 91.62 0.186 0.936 98.92 91.62
RMSProp 0.167 2.867 97.43 93.43 2.473 2.867 97.68 92.43
Nadam 1.384 1.592 96.78 92.51 0.171 1.629 99.12 92.51
Adadelta 0.942 0.951 98.08 95.43 1.149 1.519 99.66 93.15
Adam 0.467 0.694 99.92 95.88 1.154 1.124 99.76 95.67
Adagrad 0.824 0.931 99.37 94.92 0.194 0.931 99.59 94.92

As shown in table 4, using CNN model 1, the Adam optimizer had the lowest loss on the
test set while Adadelta reported a better classification result while trained on the Fashion-
MNIST dataset. This demonstrates the ability of Adadelta to adapt learning rates instead of
accumulating all past gradients. On the other hand, Adagrad algorithm had the lowest loss on
the test set and the best training accuracy obtained from the Adam optimizer. Adagrad, which
uses  a  per-dimension  learning  rate  based  on  squared  past  gradients,  achieves  significant
performance  on  the  generalization  error  in  comparison  with  other  algorithms  in  sparse
settings (Reddi, et al., 2018).

Table 5: Performance of the models trained using the different optimization algorithms on Kaggle Flower
Recognition dataset.

CNN Model 1 CNN Model 2

Optimization
method

Loss
Train 

set 
Test
set

Accuracy
(%)

Train set Test set 

Loss
Train

set
Test
set

Accuracy
(%)

Train set  Test
set  

Adamax 0. 993 1.793 98.78 92.58 1.138 1.926 100.00 83.68
RMSProp 1.727 2.211 99.62 91.24 4.747 9.545 98.54 81.84
Nadam 1.7.95 1.770 97.46 91.62 1.538 1.516 99.56 84.56
Adadelta 0.667 0.937 98.67 93.19 1.411 2.218 99.89 83.65
Adam 0.511 1.324 99.52 92.56 1.156 1.532 100.00 82.93
Adagrad 1.479 1.142 99.44 91.53 1.937 2.105 99.32 82.20

On the Kaggle Flower recognition test set, the CNN Model 1, achieved 93.19 % accuracy,
while optimized by the Adadelta algorithm. CNN Model 2 achieved 84.56% while optimized
on the Nadam algorithm. 

Table 6: Performance of the models trained using the different optimization algorithms on Scene
Classification dataset.

CNN Model 1 CNN Model 2

Optimization
method

Loss
Train

set
Test
set

Accurac
y (%)

Train set Test set

Loss
Train 

set
Test 
set

Accuracy
(%)

Train set Test set
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Adamax 0.465 0.964 94.24 75.63 0.773 1.436 99.33 94.16
RMSProp 2.147 1.219 94.38 75.37 8.619 2.211 96.91 93.98
Nadam 0.745 0.755 96.78 76.44 1.593 1.022 98.45 95.16
Adadelta 0.668 0.961 94.37 75.46 0. 815 0.931 98.66 98.68
Adam 0.981 1.029 98.49 75.55 1.324 1.382 99.22 97.54
Adagrad 0.422 0.852 97.72 74.87 1.061 1.231 98.28 98.12

Table 6 gives the results of the models while tested on the Scene classification dataset.
The CNN Model 1, achieved 76.44 % accuracy when optimized by the Nadam algorithm
whereas CNN Model 2 achieved 98.68% while optimized on the Adadelta algorithm. 

Based on the results obtained, the following observations are made:
1) In  terms  of  accuracy,  the  best  test  set  results,  were  obtained  using  the  Nadam

optimization  algorithm  and  the  Adaptive  Momentum  Estimation  (Adam)  and  its
variant Adadelta. 

2) The most stable, not essentially the best, performance on validation data, especially
on  the  loss,  among  the  optimizers  show  Adagrad  and  Adadelta  optimization
algorithms.

3) RMSProp optimization algorithm, in all the cases, has considerably larger validation
loss  than  other  optimizers  that  consistently  keeps  growing.  Remarkably,
notwithstanding  the  great  discrepancy  between  RMSProp  and  others  optimizers’
losses,  its  validation,  and  finally  test  set  accuracy  remained  equitably  well  and
comparable with others.

Adam and its variant computes adaptive learning rates for each parameter by combining
the ideas of momentum and adaptive gradient and keeps an exponentially decaying average
of past gradients. They are mainly referred to as first-order adaptive optimization algorithms
given their super-fast convergence speed in solving large scale optimization tasks (Tao, Xia,
& Li,  2019).  They iteratively  update parameters  by moving them to the direction  of the
negative gradient of the cost function with non-fixed learning rate. These methods address the
problem of rapid decay of learning rate by scaling down the gradient by the square roots of
exponential moving average of past squared gradients (Reddi, et al., 2018). The results of the
analysis shows that the effective learning rate potentially increase over time in a fairly quick
manner. 

7. Conclusion 
In this paper, we explored the different adaptive optimization algorithms commonly used for
training  deep  learning  model  architectures  and  compared  their  effect  on  the  model’s
generalization performance on image classification  problem. Experiments  were conducted
using  two  convolutional  neural  network  models  and  the  performance  of  each  adaptive
optimization method was compared while trained and tested on three large image datasets.
The empirical evaluations demonstrate that the chosen optimization algorithm can positively
affect  model’s generalization performance.  The Adam, Adadelta  and Nadam optimization
algorithms  were  observed  to  be  the  best-performing  algorithms  on  new  data  in  our
experiments.  Adaptive  optimization  algorithms  consider  the  cumulative  changes  of  each
parameter in their respective iterative optimization processes. They scale coordinates of the
gradient by square roots of some form of averaging of the squared coordinates in the past
gradients  and automatically  adjust  the learning rate  on a parameter  basis.  The theoretical
background  complemented  with  experimental  results  of  the  deep  learning  process  is
beneficial to anyone who seeks more in-depth insight into the fields of optimization of deep
learning. 

13



Proceedings of the Kabarak University International Conference On Computing And 
Information Systems, 4th - 8th October 2021 Nakuru, Kenya. 

8. Recommendations for Future work
 In future, it  would be interesting to expand the experimental  evaluations to examine the
extent  to  which  other  lower-performing  optimizers  would  compare  with  the  adaptive
optimizers in generalizing model performance. Further, future experiments can also focus on
experimental  evaluations  on  different  neural  network  architectures  and  problems  from
different domains.  
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