
Proceedings of the Kabarak University International Conference On Computing And
Information Systems, 4th - 8th October 2021 Nakuru, Kenya.

Empirical Evaluation of Adaptive
Optimization on the Generalization

Performance of Convolutional Neural
Networks

Stephen WANJAU1, Geoffrey WAMBUGU1, Aaron OIRERE1

1 Murang’a University of Technology, P.O. Box 75 - 10200, Murang’a, Kenya
Tel: +254 740 910 882, Email: steve.kahara@gmail.com

Abstract: Recently, deep learning based techniques have garnered significant interest
and popularity in a variety of fields of research due to their effectiveness in search for
an optimal solution given a finite amount of data. However, the optimization of these
networks has become more challenging as neural networks become deeper and datasets
growing larger. The choice of the algorithm to optimize a neural network is one of the
most important steps in model design and training in order to obtain a model that will
generalize well on new, previously unseen data. In deep learning, adaptive gradient
optimization methods are mostly preferred for supervised and unsupervised tasks. First,
they accelerate the training of neural networks and since mini batches are selected
randomly and are independent, an unbiased estimate of the expected gradient can be
computed. This paper examined six state-of-the-art adaptive gradient optimization
algorithms, namely, AdaMax, AdaGrad, AdaDelta, RMSProp, Nadam, and Adam on
the generalization performance of convolutional neural networks (CNN) architecture
that are extensively used in computer vision tasks. Experiments were conducted giving
comparative analysis on the behaviour of these algorithms during model training on
three large image datasets, namely, Fashion-MNIST, Kaggle Flowers Recognition and
Scene classification. The results show that Adam, Adadelta and Nadam finds the global
minimum faster in the experiments, have a better convergence curve, and higher test
set accuracy in experiments using the three datasets. These optimization approaches
adaptively tune the learning rate based only on the recent gradients; thus, controlling
the reliance of the update on the past few gradients.

Keywords: Adaptive gradient methods; optimization; deep learning; convolutional
neural networks; image processing.

1. Introduction
The design goal of any machine learning classifier and any learning algorithm in general,
based on a training set of a finite size, is to ultimately provide a good generalization
performance (Theodoridis, 2020). The generalization performance is quantified by the
difference between the training error and the test error where good machine learning
algorithms are those where the test error and the training error have close values (Hu &
Zheng, 2019). Recently, deep learning algorithms have shown to have better generalization
performance than traditional machine learning techniques in solving classification problems.
However, explaining why these highly non-convex models trained by a specific optimization
algorithm can generalize better has become a significant open question in deep learning
(Wang, Meng, Chen, & Liu, 2021).

Proceedings of the Kabarak University International Conference On Computing And
Information Systems, 4th - 8th October 2021 Nakuru, Kenya.

In the literature, different approaches have been employed to improve on the
generalization performance of neural networks. Among these approaches, some explore the
implicit regularization property of Stochastic Gradient Descent (SGD) (Hardt, Recht, &
Singer, 2016; Zhang, Bengio, Hardt, Recht, & Vinyals, 2017); Neyshabur, Tomioka,
Salakhutdinov, & Srebro, 2017). Another perspective relies on the geometry of loss function
around a global minimum with the work of Keskar, Mudigere, Nocedal, Smelyanskiy, and
Tang (2017) adopting this perspective to explain why small-batch SGD often converges to
the solution generalizing better than large-batch SGD similar to the work of (Baldassi, et al.,
2016) where discrete networks were considered.

Optimization is a significant component in deep learning. Optimization provides an
approach to minimizing the loss function, often referred to as the objective function in
stochastic nonconvex optimization (Kingma & Ba, 2015). Optimization considers different
methods and algorithms used for learning the underlying mapping from input data to outputs
by choosing the right set of parameters that will reduce the error during model training
(Marin, Skelin, & Grujic, 2019). Through optimization, researchers seek to find a suitable
model, which will generalize well on new, previously unseen data. Stochastic gradient
descent (SGD) with mini-batches and its variant are undoubtedly the most prevalent methods
for training deep neural networks, owing to its simplicity and greater performance than the
alternatives (Wang & Srebro, 2019). For instance, the use of minibatch optimization
algorithms makes the training process more stable as it reduces the variance of gradient
estimate. These algorithms take smaller number of updates if a larger mini-batch size is used.
Moreover, the backpropagation procedure on a larger mini-batch can utilize massive
parallelization of linear algebra routines provided by advanced computational hardware such
as graphical processing units and clusters (Hu & Zheng, 2019).

Stochastic optimization methods are the dominant techniques in the training of deep
neural networks. In this paper, we explore the commonly used adaptive optimization
algorithms and conduct empirical analysis of their effect on the training process and the final
generalization performance of deep learning models. In particular, convolutional neural
networks (CNNs) are considered. Convolutional neural networks are one of the popular deep
learning models that have a wide range of applications in the field of computer vision. A
comparative analysis on the validation accuracy, as well as the model loss (train and test) of
each optimization algorithm in the generation of an optimization solution is done using three
large image datasets, namely, Fashion MNIST, Kaggle Flowers and Scene classification.

The rest of the paper is structured as follows. Section 2 defines the problem statement
giving clarity to the thrust of our paper. Section 3 highlights the objectives of the study and
section 4 review literature on the concept of optimization, gives a theoretical background on
nonconvex stochastic optimization with a focus on adaptive optimization algorithms used for
training deep neural networks and highlights optimization challenges in deep learning.
Section 5 describes the methodology used. Section 6 provides the results and discussion on
the comparative analysis of the different adaptive optimization algorithms on the image
classification problem on the training process and generalization performance. In section 7,
conclusion is made and in section 8, recommendations for future work are provided.

2. Problem Statement
Optimizing neural networks has become more challenging as the neural networks become
deeper and datasets growing larger (Marin, Skelin, & Grujic, 2019). The well-known
challenges in training deep neural networks are local minima, saddle points and the
explosion/vanishing gradient attributable to the concatenation of many layers (Tan & Lim,
2019). During network training, an optimization algorithm iteratively steps across the search
space, updating the weights. The algorithm seeks possible values for the model in order to

2

Proceedings of the Kabarak University International Conference On Computing And
Information Systems, 4th - 8th October 2021 Nakuru, Kenya.

obtain a set of weights that results in good performance. The choice of the best algorithm to
optimize the neural network is one of the most important steps in model design and training
so as to obtain a model that will generalize well on new, previously unseen data. Adaptive
optimization methods such as AdaGrad, RMSProp and Adam are mostly preferred for
supervised and unsupervised learning tasks (Reddi, Zaheer, Sachan, Kale, & Kumar, 2018;
Liang, Ma, & Li, 2020). Numerous works have provided empirical evidence that adaptive
optimization methods may suffer from poor generalization performance (Wang, Meng,
Chen, & Liu, 2021). However, empirical evaluation on the generalization of adaptive
optimization algorithms is still lacking. Additionally, adaptive methods have been studied in
the convex settings but their analysis in the non-convex settings is still in the nascent stages
(Duchi, Hazan, & Singer, 2011; Li, Zhao, Arora, Liu, & Haupt, 2016).

3. Objectives
The main objective of this paper is to present an empirical evaluation of adaptive
optimization on the generalization performance of CNNs. The specific objectives are:

(a) To review literature on the adaptive optimization approaches employed to improve on
the generalization performance of deep learning networks.

(b) To analyse the impact of adaptive optimization on the generalization performance of
convolutional neural networks

(c) To determine the best optimization algorithms that can be used to obtain a model that
will generalize well on new, previously unseen data.

4. Literature Review
The crux of machine learning algorithms is to develop an optimized model capable of
learning the parameters in the objective function and the constraints placed from the given
dataset. Several effective optimization methods have been put forward to stimulate
development of machine learning, consequently improving their performance and efficiency
(Shone, Ngoc, Phai, & Shi, 2018). According to Zhou (2018), majority of neural network
applications are naturally formulated as non-convex optimization due to the complex
mechanism of the underlying model. In addition, neural networks have many symmetric
configurations such as exchanging intermediate neurons, hence non-convex.

With the increasing interest in deep learning applications, researchers have deemed it
necessary to deal with non-convex optimization progressively, more particularly because of
the benefits hidden behind their complexity. By definition, a non-convex optimization is any
problem where the objective or any of the constraints are non-convex (Jain & Kar, 2017)
predominantly because such algorithms operate in high-dimensional spaces. The freedom to
express the learning problem as a non-convex optimization problem gives immense
modelling power to the algorithm designer (Mehdi, 2020).

Training a deep neural network can be described as an optimization problem with non-
convex objective function. The non-convex deep neural networks have been found to have
large amount of global minima (Choromanska, Henaff, Mathieu, Arous, & LeCun, 2015)
with only a few able to guarantee satisfactory generalization property (Brutzkus, Globerson,
Malach, & Shalev-Shwartz, 2018). During the training process, model parameters are
iteratively updated in order to reduce the cost on the training data. Optimization methods are
used to optimize noisy functions, i.e., track key parameters of interest in data streams, which
can have changing dynamics over time. Stochastic methods are mainly employed in non-
convex problems where robust results have been demonstrated (Reddi, et al., 2016; Jain &
Kar, 2017; Mehdi, 2020). The adaptive nature of stochastic approximation methods such as
stochastic gradient descent make them highly applicable in a range of applications,

3

Proceedings of the Kabarak University International Conference On Computing And
Information Systems, 4th - 8th October 2021 Nakuru, Kenya.

particularly in machine learning (Reddi, Zaheer, Sachan, Kale, & Kumar, 2018). Various
optimization algorithms exist in the literature for training neural networks and they vary in
the way they update network parameters.

4.1 Nonconvex Stochastic Optimization

The literature on stochastic optimization is vast. In this work, the stochastic gradient descent
and its variant for smooth non-convex problems are analysed by (Ghadimi, Lan, & Zhang,
2016). According to Huang and Chen (2019), stochastic gradient descent is an efficient
method for solving the following optimization problem, which is fundamental to machine
learning,

Eq. (1)

min
x∈ Rd

f (x)+g (x)

Where f (x)=1
n∑i=1

n

f i (x) indicates the loss function, and g (x)denotes the regularization

function. However, when sample size n is large, even the model optimization becomes
computationally burdensome. This is because SGD computes gradient of one sample instead
of all samples in each iteration, and therefore it has only per-iteration complexity of O (d) .

Moreover, regardless of its scalability, stochastic gradient is much noisier than the batch
gradient due to the existence of variance in stochastic process (Ghadimi, Lan, & Zhang,
2016). Recently, adaptive gradient optimization algorithms have successfully been applied to
reduce this variance. They adaptively tune the learning rate based only on the recent
gradients; thus controlling the reliance of the update on the past few gradients. These
algorithms leverage the curvature of the objective function that yields adaptive coordinate-
wise learning rates, which leads to faster model convergence (Zhou, Karimi, Yu, Xu, & Li,
2020). The following section discusses the adaptive optimization techniques.

4.2 Adaptive Optimization Algorithms

In deep learning, training a model is computationally expensive, exhibits slow convergence,
and normally takes plenty of time. Numerous optimization algorithms are increasingly being
developed that produce the adaptive learning rate factor by global estimation of the gradient
(Liu, Feng, Li, Wang, & Wu, 2021). Researchers become drained with setting up the learning
rates in an effort to optimize the models. Hence, the adaptive optimization techniques were
developed.

Adaptive optimization techniques do not require setting the learning rate since they are
dynamically adjusted during model training (Liang, Ma, & Li, 2020). Researchers need to
initialize the learning rate parameters and the adaptive optimization algorithms keep updating
learning rates during model training (Reddi, et al., 2018). The fundamental issue for the
success of adaptive optimization algorithms is to design better conditioners of the gradient
(Wang, Meng, Chen, & Liu, 2021). The following six adaptive optimization techniques
namely, AdaGrad, RMSProp, AdaDelta, Adam, AdaMax and Nadam algorithms described in
the literature are considered. These algorithms have been successfully employed in a plethora
of applications, achieving status of the art results (Reddi, et al., 2018).

4

Proceedings of the Kabarak University International Conference On Computing And
Information Systems, 4th - 8th October 2021 Nakuru, Kenya.

4.2.1 Adagrad Optimizer
AdaGrad (Duchi, Hazan, & Singer, 2011) is the first algorithm designed that can
independently adapt to the learning rate of all hyperparameters. Adagrad works on setting the
learning rate by dividing the learning rate component by the square root of the cumulative
sum of the current gradient and the previous gradient. In other words, Adagrad calculates the
step size for each parameter by first summing the partial derivatives for the parameter seen so
far during the search, then dividing the initial step size hyperparameter by the square root of
the sum of the squared partial derivatives. According to (Liang, Ma, & Li, 2020) the main
weakness of Adagrad is that the continuous accumulation of past gradients will make the
learning rate very small, which will lead to the inability to effectively update the parameters,
and will be difficult to obtain useful information.

4.2.2 RMSProp
Root Mean Squared Propagation (RMSProp) (Hinton, Srivastava, & Swersky, 2012) was
proposed to achieve a rapid training process with an element-wise scaling term on learning
rates. The technique tries to resolve the problem that gradients may vary widely in
magnitudes. The method uses a decaying average of partial gradients in the adaptation of the
step size for each parameter. In this way, the method focus is on the most recently observed
partial gradients seen during the progress of the search, overcoming the limitation of
AdaGrad method.

4.2.3 Adadelta Optimizer
Adadelta (Zeiler, 2012) works on exponential moving averages of the squared delta’s. Delta
refers to the difference between the current weight and the newly updated weight. Adadelta
optimizer uses momentum techniques to deal with the monotonically decreasing learning rate
problem. The technique removes the learning rate parameter and replaces it with delta. This
leads to the learning rate being more stable, and the algorithm overall becomes more robust.

4.2.4 Adam
The Adaptive Momentum (Adam) optimization technique proposed by Kingma and Ba
(2015) is the most popular method used in for optimizing many neural network models.
Adam is a combination of RMSprop and momentum, that uses the squared gradient to scale
the learning rate parameters like RMSprop and it works similar to the momentum by adding
averages of moving gradients. It computes different parameters for individual parameters.

4.2.5 AdaMax
AdaMax (Luo, Xiong, Liu, & Sun, 2018) is variant of Adam that uses dynamic boundaries of
learning rates. AdaMax is as fast as Adam and uses an exponentially weighted infinity norm
instead of the second-order moment estimate (Yi, Ahn, & Ji, 2020) when scaling gradient.

4.2.6 NADAM
The Nesterov-accelerated Adaptive Moment Estimation (Nadam) is a blend of Adam and
Nesterov accelerated algorithms. The idea behind this type of algorithm is to increase and
decrease the decay factor β over time. A series of parameters β1 , β2 ,…, β t corresponding
respectively to steps 1 ,2 ,…, t is considered for better clarity (Mustapha, Mohamed, & Ali,
2021). The application of the momentum step in step t+1 is applied once updating the step t
as an alternative oft+1.

4.3 Optimization Challenges in Deep Learning

Numerical optimization methods systematically vary the inputs to a function so as to realize
the minimum or maximum value of the function. Normally, this requires numerous

5

Proceedings of the Kabarak University International Conference On Computing And
Information Systems, 4th - 8th October 2021 Nakuru, Kenya.

evaluations of the objective function (Fike, Jongsma, Alonso, & Weide, 2011). Optimization
methods that utilize gradient information usually converge to the optimal solution in fewer
iterations than methods that only rely on the function values and tends to drive parameters to
certain kinds of global minima, which generalize well. However, optimization of deep neural
networks comes with some challenges (Marin, Skelin, & Grujic, 2019). In the literature, the
most vexing ones are local minima, saddle points, and vanishing gradients.

4.3.1 Local Minima
The convergence of the optimization algorithm should be ensured to avoid falling into local
optimum (Hu & Zheng, 2019). Researchers have empirically demonstrated that different
local optima, attained from training deep neural networks do not generalize in a similar
manner for the unseen data sets, albeit achieving similar training loss (Wang, Keskar, Xiong,
& Socher, 2018). Figure 1 shows local minima in deep learning training.

Figure 1: Local Minima in non-convex functions (Source: (MyRank, 2018))

Experiments conducted with different batch sizes showed that sharp minima do correlate
with higher generalization error. According to Keskar, et al. (2017) and Chaudhari, et al.
(2019), the generalization ability of a model is associated with the spectrum of the Hessian
matrix (Fike, Jongsma, Alonso, & Weide, 2011), a square matrix that sort out all the second
partial derivatives of a given multivariable function, evaluated at the solution. Large
eigenvalues of the hessian matrix often leads to poor model generalization (Wang, Keskar,
Xiong, & Socher, 2018).

Give the objective functionf (x), if the value of f (x), at x is smaller than the values of f (x),
at any other points in the vicinity of x, then f (x) could be a local minimum. On the other
hand, if the value off (x), at x is the minimum of the objective function over the entire
domain, then f (x) is the global minimum.

4.3.2 Saddle Points
A saddle point is any location where all gradients of a function vanish but which is neither a
global nor a local minimum. Saddle points in higher dimensions problems are even more
insidious since the likelihood that at least some the eigenvalues of the function’s Hessian
matrix are negative is quite high (Dauphin, et al., 2014). Figure 2 demonstrates sandle points
in non-convex functions.

6

Proceedings of the Kabarak University International Conference On Computing And
Information Systems, 4th - 8th October 2021 Nakuru, Kenya.

Figure 2: Saddle points in non-
convex functions (source: (Zadeh, 2016))

Such saddle points are surrounded by high error plateaus that can dramatically slow down
learning, and give the illusive impression of the existence of a local minimum (Jin, Ge,
Netrapalli, Kakade, & Jordan, 2017). Previous works elucidates why gradient descent
optimization avoids saddle points in the non-convex settings. For instance, (Dauphin, et al.,
2014) proposed a saddle-free Newton method that scales gradients by the absolute value of
the inverse Hessian. Their work demonstrated that near saddle points, they could achieve
rapid escape by combining the best of gradient descent and Newton methods while avoiding
the pitfalls of both.

4.3.3 Vanishing Gradients
The vanishing gradient is the most insidious problem encountered in deep learning. The
problem is mostly encountered when training deep learning models using gradient-based
learning methods and backpropagation (Tan & Lim, 2019). As more layers using certain
activation functions are added to a neural network, the gradients of the loss function
approaches zero, making the network hard to train (Wang C.-F. , 2019). Figure 3 shows the
vanishing gradient problem in training deep neural networks using the sigmoid activation
function.

Figure 3: Vanishing gradient problem (Source: (Khan, 2020))

7

Proceedings of the Kabarak University International Conference On Computing And
Information Systems, 4th - 8th October 2021 Nakuru, Kenya.

The idea is that the calculated partial derivatives is used to compute the gradient as one
goes deeper into the neural network. Since the gradients control how much the network learns
during training, if the gradients are very small or zero, then little to no training can take place,
leading to poor predictive performance. In the literature, Rectified linear units (ReLUs) have
been proposed for use during model training as they suffer less from the vanishing gradient
problem compared to sigmoidal activation functions that are known to saturate in both
directions (Brownlee, 2019).

5. Materials and Methods
This section presents the experimental design of the study. The setup and settings used in the
experiments, the deep learning architecture used, the hyper-parameter setting, and the
datasets used are described.

5.1 Experiments

The aim of this experimental study was to compare the effect of adaptive optimizers on the
training process and final generalization performance of classification models. Convolutional
neural networks, deep learning architectures were train on three datasets. For implementation,
a simulation experiment environment (Vieira, Koch, Sobral, Westphall, & de Souza Leao,
2019) was built on a 64-bit computer based on Win10 operating system platform with Intel®
i7-9750 Hz 2.60 GHz CPU, 8 GB RAM, NVIDIA GeForce RTX 2060 6G GDDR6 GPU, and
10.2 CUDA. The experiments were written in Python language and the Scikit-learn and
NumPy were used for data pre-processing. The neural networks was built based on the
Tensorflow and Keras deep learning frameworks.

5.2 CNN Model Architectures

The network architecture plays a critical role in the performance of deep learning models. In
this study, two well-known CNN model architectures were considered and further fine-tuned
to ensure effective training process (Gong, Wang, Guo, & Lazebnik, 2014). The output layer
for each model was fine-tuned to reflect the classification output expected from the chosen
dataset. Model 1 architecture was based on the VGG-16 architecture developed by the Visual
Geometry Group from the University of Oxford in 2014. VGG-16 (Simonyan & Zisserman,
2014) served as the mainstream CNN model for feature representation and classification and
was used to win the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2014.

The architecture consists of 16 layers, where convolutional layers (13) with 3x3 filters
and 2x2 max pooling layers are stacked and dense layers incorporated before the output layer.
The model contains a set of weights that are used to train the images. Table 1 shows the
summary of the fine-tuned VGG-16 model that was used to train on the Kaggle Flowers
recognition dataset.

Table 1: Architecture of the fine-tuned VGG-16 CNN Model

Model: "sequential_1"

Layer (type) Output Shape Param #
==
conv2d_1 (Conv2D) (None, 224, 224, 32) 896

conv2d_2 (Conv2D) (None, 224, 224, 64) 18496

max_pooling2d_1 (MaxPooling2 (None, 112, 112, 64) 0

8

Proceedings of the Kabarak University International Conference On Computing And
Information Systems, 4th - 8th October 2021 Nakuru, Kenya.

dropout_1 (Dropout) (None, 112, 112, 64) 0

conv2d_3 (Conv2D) (None, 112, 112, 128) 73856

conv2d_4 (Conv2D) (None, 110, 110, 256) 295168

max_pooling2d_2 (MaxPooling2 (None, 36, 36, 256) 0

dropout_2 (Dropout) (None, 36, 36, 256) 0

flatten_1 (Flatten) (None, 331776) 0

dense_1 (Dense) (None, 256) 84934912

re_lu_1 (ReLU) (None, 256) 0

dropout_3 (Dropout) (None, 256) 0

dense_2 (Dense) (None, 256) 65792

re_lu_2 (ReLU) (None, 256) 0

dense_3 (Dense) (None, 5) 1285
==
Total params: 85,390,405
Trainable params: 85,390,405
Non-trainable params: 0

Model 2 architecture, AlexNet, won the ImageNet large-scale visual recognition

challenge in 2012 (Krizhevsky, Sutskever, & Hinton, 2012). The architecture is capable of
achieving high accuracies on very challenging datasets. AlexNet has eight layers with
learnable parameters comprising of 5 convolution layers with a combination of max-pooling
layers and 3 fully connected layers. The model has an image input image of size 227×227x3.
Images need to be converted to 227×227x3 before using it for training the network. If the
input image is grayscale, it is converted to an RGB image by replicating the single channel to
obtain a 3-channel RGB image. The authors introduced padding to prevent the size of the
feature maps from reducing drastically. Table 2 shows the architecture of AlexNet.

Table 2: Architecture of the fine-tuned AlexNet Model

Layer Size of Feature
Map

#filters
or

neurons

Filter Size Stride Padding Activation

Input 227x227x3 - - - - -
Convolution 1 55x55x96 96 11x11 4 - relu
Maxpooling 1 27x27x96 - 3x3 2 - -
Convolution 2 27x27x256 256 5x5 1 2 relu
Maxpooling 2 13x13x256 - 3x3 2 - -
Convolution 3 13x13x384 384 3x3 1 1 relu
Convolution 4 13x13x384 384 3x3 1 1 relu
Convolution 5 13x13x256 256 3x3 1 1 relu
Max pooling 3 6x6x256 - 3x3 2 - -

Dropout 1 6x6x256 rate=0.5 - - - -

9

Proceedings of the Kabarak University International Conference On Computing And
Information Systems, 4th - 8th October 2021 Nakuru, Kenya.

5.3 Hyperparameter settings

The definitive solution of the gradient descent optimization algorithms substantially is
contingent on the choice of the hyperparameters (Liang, Ma, & Li, 2020). The
hyperparameters of optimizers used for training each model on the three datasets are shown
in table 3 which are recommended in practice (Kingma & Ba, 2015) and employs a highly
tuned learning rate schedule.

Table 3: Hyperparameters for Adaptive Optimizers

Optimizer CNN Model 1 CNN Model 2
Adagrad lr = 0.05,ϵ=10−7 lr = 0.05,ϵ=10−7
Adam lr = 0.0005, β1=0.9,

β2=0.999 , ϵ=10−7
lr = 0.0005, β1=0.9,
β2=0.999 , ϵ=10−7

Adadelta lr = 0.0001, β1=0.9,
β2=0.999 , ϵ=10−7

lr = 0.0001, β1=0.9,
β2=0.999 , ϵ=10−7

Nadam lr = 0.001, β1=0.9,
β2=0.999 , ϵ=10−7

lr = 0.001, β1=0.9,
β2=0.999 , ϵ=10−7

AdaMax lr = 0.001, β1=0.9,
β2=0.999 , ϵ=10−7

lr = 0.001, β1=0.9,
β2=0.999 , ϵ=10−7

RMSProp lr = 0.001, ρ=0.9,
 ϵ=10−7

lr = 0.0001, ρ=0.9,
 ϵ=10−7

The study used 50 epochs for model training while the grid search method was used to
tune the step size for each optimizer. The models were trained with mini-batches of size 40.
All the experiments utilized the ReduceLRonPlateau schedule with patience of 8 epochs and
a decay factor of 0.5.

5.4 Datasets

In this study, three large image datasets, namely, MNIST, Kaggle Flowers and Scene
classification were used. The original training data were split into two parts: training data and
validation data, where 30% of original training data were used for validation and the rest for
training.

5.4.1 Fashion-MNIST Dataset
Fashion-MNIST (Xiao, Rasul, & Vollgraf, 2017) dataset comprises of 70,000 of 28X28
grayscale images of fashion products (clothes and shoes) from 10 different categories.

5.4.2 Kaggle Flowers Recognition Dataset
This dataset contains 4,242 images of labelled flowers. The pictures are divided into five
classes: daisy, tulip, rose, sunflower and dandelion. For each class, there are about 800
photos. Photos are not in high resolution, 320x240 pixels.

5.4.3 Scene Classification Dataset
The 15 Scene classification dataset (Lazebnik, Schmid, & Ponce, 2006), is a popular dataset
with 15 natural and indoor categories. The categories include office, kitchen, living room,
bedroom, store, industrial, tall building, inside city, street, highway, coast, open country,
mountain, forest, and suburb. The dataset contains 4,485 images, whose average image size is
300×250 pixels. The main sources of the pictures include the COREL collection, personal
photographs, and Google image search. The objective is to classifying a scene image into one
of the predefined scene categories by comprehending the entire image.

10

Proceedings of the Kabarak University International Conference On Computing And
Information Systems, 4th - 8th October 2021 Nakuru, Kenya.

6. Results and Discussion
Training the deep learning models simply meant determining good values for all the weights
and the bias from the labelled examples. The goal is to find a set of weights and biases that
have low loss, on average, across all examples. Adaptive gradient methods widely used in
deep learning, namely, AdaGrad, RMSProp, AdaDelta, Adam, AdaMax and Nadam were
used to adapt weights and learning rate of the networks, thus reduce the losses and provide
the most accurate results possible.

The observations regarding the influence of the adaptive optimization algorithms used on
the behaviour and final generalization performance of the CNN model are based on the
empirical evaluations on the two CNN model architectures, each trained on the three datasets.
Figure 4 shows the loss and training accuracy of the CNN model 1 using the Adam optimizer
on the Scene classification dataset after training the model using the Scene dataset.

Figure 4: Loss and Accuracy for CNN Model 1 using Adam optimizer on the Scene recognition dataset

From the results, it can be seen that the models performed very well since the training
loss and the testing loss were very close. The loss function is used to optimize the deep
learning algorithm. The loss is calculated on both the training and validation set and its
interpretation is based on how well the model is performing on these two sets. The model loss
is the sum of errors made for each example in training or validation sets. The loss value
implies how poorly or well a model behaves after each iteration of optimization. Figure 5
presents the CNN model 2 loss and training accuracy optimized using the Adadelta algorithm
on the Fashion-MNIST dataset.

11

Loss (b) Accuracy

Loss (b) Accuracy

Proceedings of the Kabarak University International Conference On Computing And
Information Systems, 4th - 8th October 2021 Nakuru, Kenya.

Figure 5: Loss and Accuracy for CNN Model 2 based on Adadelta optimizer on Fashion-MNIST dataset

The accuracy metric is used to measure the algorithm’s performance in an interpretable
way. Accuracy of each model was determined after the model parameters were fully
optimized and calculated in the form of a percentage. Accuracy is the measure of how perfect
the model's prediction is compared to the true data. In the study, the validation loss and
classification accuracy result were compared based on the different optimization algorithms.
The results are presented over the Fashion-MNIST, Kaggle Flowers Recognition and Scene
Classification datasets. The final results are reported in Tables 4, 5 and 6.

Table 4: Performance of the models trained using the different optimization algorithms on Fashion-MNIST
dataset.

CNN Model 1 CNN Model 2

Optimization
method

Loss
Train

set
Test
set

 Accuracy
(%)

Train set Test set

Loss
Train set Test set

Accuracy
(%)

Train set Test set

Adamax 0.759 0.920 95.81 91.62 0.186 0.936 98.92 91.62
RMSProp 0.167 2.867 97.43 93.43 2.473 2.867 97.68 92.43
Nadam 1.384 1.592 96.78 92.51 0.171 1.629 99.12 92.51
Adadelta 0.942 0.951 98.08 95.43 1.149 1.519 99.66 93.15
Adam 0.467 0.694 99.92 95.88 1.154 1.124 99.76 95.67
Adagrad 0.824 0.931 99.37 94.92 0.194 0.931 99.59 94.92

As shown in table 4, using CNN model 1, the Adam optimizer had the lowest loss on the
test set while Adadelta reported a better classification result while trained on the Fashion-
MNIST dataset. This demonstrates the ability of Adadelta to adapt learning rates instead of
accumulating all past gradients. On the other hand, Adagrad algorithm had the lowest loss on
the test set and the best training accuracy obtained from the Adam optimizer. Adagrad, which
uses a per-dimension learning rate based on squared past gradients, achieves significant
performance on the generalization error in comparison with other algorithms in sparse
settings (Reddi, et al., 2018).

Table 5: Performance of the models trained using the different optimization algorithms on Kaggle Flower
Recognition dataset.

CNN Model 1 CNN Model 2

Optimization
method

Loss
Train

set
Test
set

Accuracy
(%)

Train set Test set

Loss
Train

set
Test
set

Accuracy
(%)

Train set Test
set

Adamax 0. 993 1.793 98.78 92.58 1.138 1.926 100.00 83.68
RMSProp 1.727 2.211 99.62 91.24 4.747 9.545 98.54 81.84
Nadam 1.7.95 1.770 97.46 91.62 1.538 1.516 99.56 84.56
Adadelta 0.667 0.937 98.67 93.19 1.411 2.218 99.89 83.65
Adam 0.511 1.324 99.52 92.56 1.156 1.532 100.00 82.93
Adagrad 1.479 1.142 99.44 91.53 1.937 2.105 99.32 82.20

On the Kaggle Flower recognition test set, the CNN Model 1, achieved 93.19 % accuracy,
while optimized by the Adadelta algorithm. CNN Model 2 achieved 84.56% while optimized
on the Nadam algorithm.

Table 6: Performance of the models trained using the different optimization algorithms on Scene
Classification dataset.

CNN Model 1 CNN Model 2

Optimization
method

Loss
Train

set
Test
set

Accurac
y (%)

Train set Test set

Loss
Train

set
Test
set

Accuracy
(%)

Train set Test set

12

Proceedings of the Kabarak University International Conference On Computing And
Information Systems, 4th - 8th October 2021 Nakuru, Kenya.

Adamax 0.465 0.964 94.24 75.63 0.773 1.436 99.33 94.16
RMSProp 2.147 1.219 94.38 75.37 8.619 2.211 96.91 93.98
Nadam 0.745 0.755 96.78 76.44 1.593 1.022 98.45 95.16
Adadelta 0.668 0.961 94.37 75.46 0. 815 0.931 98.66 98.68
Adam 0.981 1.029 98.49 75.55 1.324 1.382 99.22 97.54
Adagrad 0.422 0.852 97.72 74.87 1.061 1.231 98.28 98.12

Table 6 gives the results of the models while tested on the Scene classification dataset.
The CNN Model 1, achieved 76.44 % accuracy when optimized by the Nadam algorithm
whereas CNN Model 2 achieved 98.68% while optimized on the Adadelta algorithm.

Based on the results obtained, the following observations are made:
1) In terms of accuracy, the best test set results, were obtained using the Nadam

optimization algorithm and the Adaptive Momentum Estimation (Adam) and its
variant Adadelta.

2) The most stable, not essentially the best, performance on validation data, especially
on the loss, among the optimizers show Adagrad and Adadelta optimization
algorithms.

3) RMSProp optimization algorithm, in all the cases, has considerably larger validation
loss than other optimizers that consistently keeps growing. Remarkably,
notwithstanding the great discrepancy between RMSProp and others optimizers’
losses, its validation, and finally test set accuracy remained equitably well and
comparable with others.

Adam and its variant computes adaptive learning rates for each parameter by combining
the ideas of momentum and adaptive gradient and keeps an exponentially decaying average
of past gradients. They are mainly referred to as first-order adaptive optimization algorithms
given their super-fast convergence speed in solving large scale optimization tasks (Tao, Xia,
& Li, 2019). They iteratively update parameters by moving them to the direction of the
negative gradient of the cost function with non-fixed learning rate. These methods address the
problem of rapid decay of learning rate by scaling down the gradient by the square roots of
exponential moving average of past squared gradients (Reddi, et al., 2018). The results of the
analysis shows that the effective learning rate potentially increase over time in a fairly quick
manner.

7. Conclusion
In this paper, we explored the different adaptive optimization algorithms commonly used for
training deep learning model architectures and compared their effect on the model’s
generalization performance on image classification problem. Experiments were conducted
using two convolutional neural network models and the performance of each adaptive
optimization method was compared while trained and tested on three large image datasets.
The empirical evaluations demonstrate that the chosen optimization algorithm can positively
affect model’s generalization performance. The Adam, Adadelta and Nadam optimization
algorithms were observed to be the best-performing algorithms on new data in our
experiments. Adaptive optimization algorithms consider the cumulative changes of each
parameter in their respective iterative optimization processes. They scale coordinates of the
gradient by square roots of some form of averaging of the squared coordinates in the past
gradients and automatically adjust the learning rate on a parameter basis. The theoretical
background complemented with experimental results of the deep learning process is
beneficial to anyone who seeks more in-depth insight into the fields of optimization of deep
learning.

13

Proceedings of the Kabarak University International Conference On Computing And
Information Systems, 4th - 8th October 2021 Nakuru, Kenya.

8. Recommendations for Future work
 In future, it would be interesting to expand the experimental evaluations to examine the
extent to which other lower-performing optimizers would compare with the adaptive
optimizers in generalizing model performance. Further, future experiments can also focus on
experimental evaluations on different neural network architectures and problems from
different domains.

References
Baldassi, C., Borgs, C., Chayes, J., Ingrosso, A., Lucibello, C., Saglietti, L., & Zecchina, R.

(2016). Unreasonable effectiveness of learning neural networks: From accessible
states and robust ensembles to basic algorithmic schemes. Proceedings of the
National Academy of Sciences, 113(48), pp. E7655–E7662.

Brownlee, J. (2019, January 8). A Gentle Introduction to the Rectified Linear Unit (ReLU).
Retrieved July 16, 2021, from Machine Learning Mastery:
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-
learning-neural-networks/

Brutzkus, A., Globerson, A., Malach, E., & Shalev-Shwartz, S. (2018). Sgd learns over-
parameterized networks that provably generalize on linearly separable data.
International Conference on Learning Representations.

Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y., Baldassi, C., Borgs, C., . . . Zecchina,
R. (2019, December 20). Entropy-SGD: biasing gradient descent into wide valleys.
Journal of Statistical Mechanics: Theory and Experiment, 2019(124018).

Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B., & LeCun, Y. (2015). The loss
surfaces of multilayer networks. In Artificial intelligence and statistics (pp. 192-204).

Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., & Bengio, Y. (2014,
January). Identifying and attacking the saddle point problem in high-dimensional non-
convex optimization. Advances in Neural Information Processing Systems, 4, 2933-
2941.

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(7), 257-269.

Fike, J., Jongsma, S., Alonso, J., & Weide, E. (2011). Optimization with Gradient and
Hessian Information Calculated Using Hyper-Dual Numbers. 29th AIAA Applied
Aerodynamics Conference (pp. 1-19). Honolulu, Hawaii: American Institute of
Aeronautics and Astronautics.

Ghadimi, S., Lan, G., & Zhang, H. (2016). Mini-batch stochastic approximation meth-ods for
nonconvex stochastic composite optimization. Mathematical Programming, 155(1-2),
267-305.

Gong, Y., Wang, L., Guo, R., & Lazebnik, S. (2014). Multi-scale orderless pooling of deep
convolutional activation features. European Conference on Computer Vision (ECCV),
392-407.

Hardt, M., Recht, B., & Singer, Y. (2016). Train faster, generalize better: Stability of
stochastic gradient descent. Proceedings of The 33rd International Conference on
Machine Learning, 48, pp. 1225-1234. New York, USA.

Hinton, G., Srivastava, N., & Swersky, K. (2012). Neural networks for machine learning.
Lecture 6a: Overview of mini-batch gradient descent.

14

Proceedings of the Kabarak University International Conference On Computing And
Information Systems, 4th - 8th October 2021 Nakuru, Kenya.

Hu, J., & Zheng, W. (2019). An Adaptive Optimization Algorithm Based on Hybrid Power
and Multidimensional Update Strategy. IEEE Access, 7, 19355-19369.
doi:10.1109/ACCESS.2019.2897639

Huang, F., & Chen, S. (2019). Mini-Batch Stochastic ADMMs for Nonconvex Nonsmooth
Optimization. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE
INTELLIGENCE, arXiv:1802.03284v3.

Jain, P., & Kar, P. (2017). Non-convex Optimization for Machine Learning. Foundations and
Trend in Machine Learning, 10(3-4), 142-336. doi:10.1561/2200000058

Jin, C., Ge, R., Netrapalli, P., Kakade, S., & Jordan, M. (2017). How to Escape Saddle Points
Efficiently. Proceedings of the 34th International Conference on MachineLearning
(PMLR70). Sydney, Australia.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., & Tang, P. T. (2017). On large-
batch training for deep learning: Generalization gap and sharp minima. International
Conference on Learning Representations (ICLR). Toulon, France.

Keskar, N., Mudigere, D., Nocedal, J., Smelyanskiy, M., & Tang, P. (2017). On Large-Batch
Training for Deep Learning: Generalization Gap and Sharp Minima. 5th International
Conference on Learning Representations, ICLR 2017. Toulon,France.

Khan, A. (2020, November 1). Vanishing Gradients. Retrieved from in2techs.com:
https://in2techs.com/vanishing-gradients/

Kingma, D., & Ba, J. (2015). Adam: A method for stochastic optimization. Proceedimgs of
the 3rd Int. Conf. Learning Representations (ICLR 2015) (p. 13). San Diego, CA:
Ithaca, NY: arXiv.org.

Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). Imagenet classification with deep
convolutional neural networks. Advances in Neural Information Processing Systems,
(pp. 1097-1105). Lake Tahoe, Nevada.

Lazebnik, S., Schmid, C., & Ponce, J. (2006). Beyond Bags of Features: Spatial Pyramid
Matching for Recognizing Natural Scene Categories. IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR'06) (pp. 2169-
2178). New York, NY, USA: IEEE.

Li, X., Zhao, T., Arora, R., Liu, H., & Haupt, J. (2016). Stochastic variance reduced
optimization for nonconvex sparse learning. Proceedings of The 33rd International
Conference on Machine Learning, 48, pp. 917-925. New York City, NY, USA.

Liang, D., Ma, F., & Li, W. (2020). New Gradient-Weighted Adaptive Gradient Methods
With Dynamic Constraints. IEEE Access, 8, 110929-110942.
doi:10.1109/ACCESS.2020.3002590

Liu, Z., Feng, R., Li, X., Wang, W., & Wu, X. (2021). Gradient-Sensitive Optimization for
Convolutional Neural Networks. Computational Intelligence and Neuroscience,,
2021, 16.

Luo, L., Xiong, Y., Liu, Y., & Sun, X. (2018). Adaptive gradient methods with dynamic
bound of learning rate. arXiv Preprints, arXiv:1902.09843.

Marin, I., Skelin, A., & Grujic, T. (2019). Empirical Evaluation of the Effect of Optimization
and Regularization Techniques on the Generalization Performance of Deep
Convolutional Neural Network. Applied Sciences, 10, 30. doi:10.3390/app10217817

Mehdi, E. (2020, July 28). Non-Convex Optimization in Deep Learning. Retrieved from
medium.com: https://medium.com/swlh/non-convex-optimization-in-deep-learning-
26fa30a2b2b3

15

Proceedings of the Kabarak University International Conference On Computing And
Information Systems, 4th - 8th October 2021 Nakuru, Kenya.

Mustapha, A., Mohamed, L., & Ali, L. (2021). Comparative study of optimization techniques
in deep learning: Application in the ophthalmology field. Journal of Physics:
Conference Series, 1743, 13. doi:10.1088/1742-6596/1743/1/012002

MyRank. (2018, February 17). Maxima and Minima. Retrieved from myrank.co,in:
https://blog.myrank.co.in/maxima-and-minima/

Neyshabur, B., Tomioka, R., Salakhutdinov, R., & Srebro, N. (2017). Geometry of
Optimization and Implicit Regularization in Deep Learning. arXiv Preprints,
arXiv:1705.03071 .

Reddi, S., Hefny, A., Sra, S., Póczos, B., & Smola, A. (2016). Stochastic variance reduction
for nonconvex optimization. Proceedings of the 33nd International Conference on
Machine Learning, ICML 2016, (pp. 314-323). New York City, NY, USA.

Reddi, S., Zaheer, M., Sachan, D., Kale, S., & Kumar, S. (2018). Adaptive Methods for
Nonconvex Optimization. 32nd Conference on Neural Information Processing
Systems (NIPS 2018), (pp. 9815-9825). Montréal, Canada.

Shone, N., Ngoc, T., Phai, V., & Shi, Q. (2018, February). A Deep Learning Approach to
Network Intrusion Detection. IEEE Transactions on Emerging Topics in
Computational Intelligence, 2(1), 41-50. doi:10.1109/TETCI.2017.2772792

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. arXiv Preprints, arXiv:1409.1556.

Tan, H. H., & Lim, K. H. (2019). Vanishing Gradient Mitigation with Deep Learning Neural
Network Optimization. 7th International Conference on Smart Computing &
Communications (ICSCC) (pp. 1-4). Curtin Malaysia, Miri, Malaysia: IEEE Xplore.
doi:10.1109/ICSCC.2019.8843652

Tao, Z., Xia, Q., & Li, Q. (2019, September 25). A new perspective in understanding of
Adam-Type algorithms and beyond. Retrieved from openreview.net:
https://openreview.net/forum?id=SyxM51BYPB

Theodoridis, S. (2020). Chapter 7 - Classification: a Tour of the Classics. In S. Theodoridis
(Ed.), Machine Learning: A Bayesian and Optimization Perspective (2nd ed., pp. 301-
350). Academic Press.

Vieira, K., Koch, F. L., Sobral, J. B., Westphall, C. B., & de Souza Leao, J. L. (2019).
Autonomic intrusion detection and response using big data. IEEE Systems Journal,
14(2), 1984-1991.

Wang, B., Meng, Q., Chen, W., & Liu, T.-Y. (2021). The Implicit Regularization for
Adaptive Optimization Algorithms on Homogeneous Neural Networks. Proceedings
of the 37th International Conference on MachineLearning (PMLR 119) , (p.
arXiv:2012.06244v3). Vienna, Austria. Retrieved from
https://arxiv.org/pdf/2012.06244.pdf

Wang, C.-F. (2019, January 8). The Vanishing Gradient Problem. Retrieved from
towardsdatascience.com: https://towardsdatascience.com/the-vanishing-gradient-
problem-69bf08b15484

Wang, H., Keskar, N., Xiong, C., & Socher, R. (2018). Identifying Generalization Properties
in Neural Networks. arXiv preprint , arXiv:1809.07402.

Wang, W., & Srebro, N. (2019). Stochastic Nonconvex Optimization with Large
Minibatches. Proceedings of the 30th International Conference on Algorithmic
Learning Theory, 98, pp. 1-26. Chicago, Illinois, USA.

16

https://arxiv.org/pdf/2012.06244.pdf

Proceedings of the Kabarak University International Conference On Computing And
Information Systems, 4th - 8th October 2021 Nakuru, Kenya.

Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-mnist: A novel image dataset for
benchmarking machine learning. arXiv Preprints, arXiv:1708.07747.

Yi, D., Ahn, J., & Ji, S. (2020). An Effective Optimization Method for Machine Learning
Based on ADAM. Applied Sciences, 10(1073), 20. doi:10.3390/app10031073

Zadeh, R. (2016, November 16). The hard thing about deep learning. Retrieved from
https://www.oreilly.com: https://www.oreilly.com/radar/the-hard-thing-about-deep-
learning/

Zeiler, M. D. (2012). ADADELTA: An adaptive learning rate method. arXiv Preprints,
arXiv:1212.5701. Retrieved from https://arxiv.org/abs/1212.5701

Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2017). Understanding deep
learning requires rethinking generalization. International Conference on Learning
Representations (ICLR 2017). Toulon, France.

Zhou, Y., Karimi, B., Yu, J., Xu, Z., & Li, P. (2020). Towards Better Generalization of
Adaptive Gradient Methods. 34th Conference on Neural Information Processing
Systems (NeurIPS 2020), (p. 12). Vancouver, Canada.

17

	1. Introduction
	2. Problem Statement
	3. Objectives
	4. Literature Review
	4.1 Nonconvex Stochastic Optimization
	4.2 Adaptive Optimization Algorithms
	4.2.1 Adagrad Optimizer
	4.2.2 RMSProp
	4.2.3 Adadelta Optimizer
	4.2.4 Adam
	4.2.5 AdaMax
	4.2.6 NADAM

	4.3 Optimization Challenges in Deep Learning
	4.3.1 Local Minima
	4.3.2 Saddle Points
	4.3.3 Vanishing Gradients

	5. Materials and Methods
	5.1 Experiments
	5.2 CNN Model Architectures
	5.3 Hyperparameter settings
	5.4 Datasets
	5.4.1 Fashion-MNIST Dataset
	5.4.2 Kaggle Flowers Recognition Dataset
	5.4.3 Scene Classification Dataset

	6. Results and Discussion
	7. Conclusion
	8. Recommendations for Future work

