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Abstract 
Recent years have seen a great improvement in the field of density functional Theory (DFT) 
calculation of electronic structure and properties of crystalline materials. There are many reasons 
that explain the current successful application of DFT to materials science related problems: The 
super speed of computers, software improvements and theory advancement. Based on these three 
pillars, we the computing scientists were able to understand the ground state properties of cubic 
scandium triflouride (ScF3) and if need arises, we willalso be able to explore the immense realm 
of the virtual materials. Indeed, high-throughput techniques for the search of novel crystal 
structures and the determination of band structure traits have become very popular in the field of 
computational materials science. Despite these, many challenges are still being faced. Common 
to all computational materials scientists is the unquenchable thirst for higher speed and better 
accuracy in DFT calculations. This paper aims to present recent advances in the theory and 
computational methods in DFT calculation of materials as well as to highlight computational 
results on structural properties of cubic ScF3 in comparison to experimental and other theoretical 
studies. We employed DFT as implemented in the Quantum ESPRESSO computer code. The 
obtained lattice parameters of between 3.96Å to 4.06Å was in agreement with the experimental 
lattice parameter of 4.03Å.  
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1.  Materials science  

This is a prime field in research that entails the study of materials propertiesand how 
these properties are determined by a material’s composition and structure. Materials science 
grew out of an amalgam of various fields like solid-state physics, metallurgy and chemistry just 
but a few(Ohring, 2001). The reason for this fusion of fields is due to the fact that the rich variety 
of materials properties cannot be understood within the context of any single discipline. With a 
basic understanding of the origins of properties, materials can be selected and tuned for 
enormous variety of applications, ranging from structural steels to computer 
microchips(Gandhi& Thompson, 1992). Materials science is fertile in engineering activities such 
as electronics and energy conversion among others.The many materials we study and to which 
materials science is applied, are usually divided into four categories: metals, polymers, 
semiconductors, and ceramics (Callister & Rethwisch, 2012).The advancement in quantum 
mechanics has given us a clear view of the behavior of matter and also the ability to guide 
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investigation with theory. Two factors are to be applauded in relation to computational materials 
science. The first factor is the exponential growth of computer-processing power. Secondly, the 
combined effort of Walter Kohn and John Pople, who developed simplified but accurate 
solutions to the equations of quantum mechanics(Kohnet al, 1996). The above factorshave made 
it possible to design new materials from scratch using supercomputers and density functional 
theory. 
 The approach above is called high-throughput computational materials design, and the 
idea is simple: use supercomputers to virtually study hundreds or thousands of chemical 
compounds at a time, quickly and searching for the best building blocks for a new material, be it 
a battery electrode, a metal alloy or a new type of semiconductor. Recently we have seen many 
serious predictions such that we are nearing the end of Moore's law(Joy, 2000). Computational 
methods involve simulating materials at all sizes; from nanowires to bulk materials, using 
methods such as density functional theory and molecular dynamics, among others. In this paper, 
we will give a focus on density functional theory. 
 

1.1 Density functional theory (DFT) 
The application of density functional theory calculations is rapidly becoming a standard tool for 
diverse materials modelling problems in materials science (Sholl & Steckel, 2001). This is 
because DFT is a phenomenally successful approach to finding solutions to the fundamental 
equation that describes the quantum behaviour of atoms and molecules. The entire application of 
DFT is built on two fundamental mathematical theorems illustrated by Kohn and Hohenberg and 
the derivation of a set of equations by Kohn and Sham in the mid-1960s(Casida &Huix-Rotllant, 
2012). The first theorem proved by Hohenberg and Kohn is: The ground-state energy from 

Schrödinger’s equation is a unique functional of the electron density(Hohenberg, & Kohn, 
1964). This theorem implies that there is a mapping between the ground-state wave function and 
the ground-state electron density. In this first theorem, we learn that the ground state electron 
density uniquely determines all properties in a system including the energy and the wave 
function of the ground state. Although Hohenberg-Kohn theorem rigorously proves that a 
functional of the electron density exists and that it can be used to solve the Schrödinger equation, 
the theoremsay nothing about what the functional actually is (Sholl, & Steckel, 2001). 
The second Hohenberg-Kohn theorem defines an important property of the functional: The 

electron density that minimises the energy of the overall functional is the true electron density 

corresponding to the full solution of the Schrödinger equation (Kohn, 1999). Let it be known 
that from the second theorem, if the ‘true’ functional were known, then we could vary the 
electron density until the energy from the functional is minimised. This variation principle is 
used in practice with approximate forms of the functional. A more precise way to write down the 
energy functionalas described by the Hohenberg-Kohn second theorem is 

E[{ψi}]= Eknown[{ψi}]+EXC[{ψi}],                                                                                 (1.1) 

Here, the functional has been split into two, the Eknown[{ψi}], and everything else, EXC . The 
“known” term include the following 
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h

2

2m
∑

i

∫ ψi

 ❑
 ∇

2
ψi d

3
r +∫ V (r )n(r )d

3
r +

e
2

2
∫ ∫ n(r )n(r ' )

|r − r '|
d

3
rd

3
r '+Eion,      (1.2) 

The terms on the RHS of equation 1.2 are electron kinetic energies, the Coulomb interactions 
between the electron and the nuclei, the Coulomb interactions between the pairs of electrons and 
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the Coulomb interactions between pairs of the nuclei. The term EXC[{ψi}]in equation 1.1 is the 
exchange-correlation functional and it is defined to include all the quantum mechanical effects 
that are not included in the “known” terms(Wesolowski & Warshel, 1993). Assuming that we 
can express the as-yet undefined exchange correlation energy functional in a useful manner, it is 
still difficult to find the minimum energy solution of the total energy functional. This difficulty 
was solved by Kohn and Sham(Kohn&Sham, 1965), who showed that the task of finding the 
right electron density can be expressed in a way that involves solving a set of equations in which 
each equation only involves a single electron. The Kohn-Sham equations have the form 

[h2

2m
 ∇

2
+V (r )+VH (r )+VXC(r )]ψi (r )= εiψi (r ),                                                              (1.3) 

Equation 1.3 is superficially similar to the time independent nonrelativistic Schrödinger 
equation(Nelson, 1966) only that it misses the summations that appear in the full Schrödinger 
equation. This is because the solution to Kohn-Sham equation is a single electron wave function 

that depend only on three spatial variablesψi (r ). On the LHS of equation 1.3 are the three 

potentials, V ,VH andVXC . V defines the interaction between an electron and the collection of 

atomic nuclei, V H is called the Hartree potential(Slater, 1951) and is defined by  

V H (r )= e
2∫ n(r ' )

|r − r '|
d

3
r ',                                                                                                       (1.4)Th

is potential describes the Coulomb repulsion between the electron being considered in one of the 
Kohn-Sham equations and the total electron density defined by all electrons in the 

problem.VXC defines the exchange correlation contributions to the single electron equations. 

VXC
(r )=

δEXC(r )

δn(r )
,                                                                                                             (1.5) 

VXC can formally be defined as a “functional derivative” of the exchange-correlation energy. 
From this discussion, the process is circular. To solve the Kohn-Sham equations, we need to 
know the single electron wave function and to know these wave functions, we must solve the 
Kohn-Sham equations. To break this circle, the problem is treated iteratively using the following 
algorithm. 
Define an initial, trial electron density, n(r ). 
Solve the Kohn-Sham equations defined using the trial electron density to find the single particle 

wave functions, ψi (r ). 
Calculate the electron density defined by the Kohn-Sham single particle wave functions from 

step 2, 
nKS= 2∑

i

ψi

 ❑
(r )ψi (r ).

 

Compare the calculated electron density, nKS(r ) , with the electron density used in solving the 
Kohn-Sham equations, n(r ). If this two densities are the same, then this is the ground state 
electron density and it can be used to compute the total energy. If the two densities are different, 
then the trial electron density must be updated in some way. 
 

1.2 Challenges encountered in DFT calculations 
It is important to note that DFT calculations are not exact solutions of the Schrödinger equation. 
This inexactness arises since the exact functional that Hohenberg-Kohn theorem applies is not 
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known(Koentopp et al, 2008). Any time we perform a DFT calculation, there is always an 
intrinsic uncertainty that exists within the energies calculated with DFT and the true ground-state 
energies of the Schrödinger equation. We can’t estimate the uncertainty apart from making a 
careful comparison with the experimental measurements. There are many physical situations 
where the accuracy of a DFT calculations is good enough to make powerful predictions about the 
properties of complex materials but in some cases it is not expected to be accurate. We will 
briefly explain such cases. One such case is that DFT has a limited accuracy in the calculation of 
electronic excited states. This can be deduced from the Hohenberg-Kohn theorems which only 
apply to the ground state energy. Another inaccuracy arising from DFT calculations is the 
underestimation of calculated band gaps in semiconducting and insulating materials. Standard 
DFT calculations with existing functionals have limited accuracy for band gaps with errors larger 
than 1 eV being noted when comparing with experimental data.  Another situation where DFT 
calculations will give inaccurate results is associated with the weak van der Waals attractions 
between atoms and molecules. Van der Waals interactions are a direct result of long range 
electron correlation and describing these interactions with DFT is challenging. Last but not least 
is the computational challenge that arise when solving the mathematical problem posed by DFT. 
Calculations involving a thousand or more atoms are computational expensive and are reserved 
for very few individuals that are able to develop or access the state of the art computer codes and 
equally using the world’s largest computers. 
 
1.3 The computation process in materials science using DFT 
Several packages have been developed in which DFT has been implemented. Right from the 
open source packages to the commercial packages. One is able to make a choice depending on a 
number of factors. One such package that is used in this work is the Quantum ESPRESSO code 
(Giannozzi et al, 2009), it falls among the many open source packages and it is written using 
python programming language (Van , 2007), a high-level programing language. The operation of 
quantum ESPRESSO package is mainly subdivided into three parts. The input (coding), 
processing (assembling and interpreting) and the output (build and run).  In the case of DFT, 
input scripts are written using the shell programming language (Sobell & Helmke, 2005) or 
python programing language. The input script contains information regarding the system under 
study, i.e the cell parameters and the way the atoms are arranged, the Bravais lattice and any 
other relevant information on the system. During processing, the assemblers do convert the shell 
or python codes into machine language, a language that the computer processors understand. The 
speed of the processing depends on the architecture of the hardware of the computer used. After 
processing, interpretation and compilation of the programing code is done. In this particular case, 
python and shell languages are not compiled but are interpreted to check for any errors. If all is 
fine, the program is then ‘build’ and run to give the expected results readable by human as useful 
information. 
 
1.4 Computation of Structural properties in cubic ScF3 
Scandium Trifluoride (ScF3) is a trivalent metal fluoride that belongs to the family of perovskite-
type compounds that have the general formula ABX3, but in this case, A-Cation site is vacant. 
The crystal structure of ScF3can be cited as ReO3-type. Cubic Scandium Triflouride (ScF3) is a 
material that contracts when exposed to heat. Not many materials are known to behave this way. 
Such materials have many interesting technological applications yet some of its properties are 
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yet to be fully explored using computational methods. We engaged state-of-the-art ab initio 

methods based on density functional theory (DFT) to study structural and Mechanical properties 
of ScF3. The calculated values of the lattice parameter, atomic volumes, bulk modulus and elastic 
constants agree with the existing experimental and theoretical data. We did our calculation using 
different exchange-correlation functionals and plane augmented wave pseudo potentials. This 
information will be used to show the predictive nature of DFT as a standard tool in materials 
science. 
 
2. Computational methodology 
All the calculations of full energies, optimized geometries were carried out using the quantum 
ESPRESSO computer code and were performed in the framework of Density Functional Theory 
(DFT). We did our calculations with five (5) exchange –correlations (XC); the Perdew-Burke-
Ernzerhof (PBE) (Perdew et al, 1996), the Perdew-Wang-91 functional (PW91) (Perdew et al, 
1992), the Wu-Cohen functional (WC) (Wu & Cohen, 2006), the enhanced Perdew-Burke-
Ernzerhof functional for solids (PBEsol) (Perdew et al, 2008) and thePerdew-Zunger functional 
(PZ) (Perdew & Zunger, 1981). We picked these exchange-correlations since they are 
computationally efficient and no adjustable parameter was required. The core–valence electron 
interaction was described by Projector Augmented Wave (PAW) pseudo-potentials from the 
0.3.1 version of the library of Dal Corso(Dal Corso, 2014). The crystal structure of ScF3was 
relaxed at 0K and 0GPa. After convergence tests, a cut-off energy of 60 Ry for the plane wave 
basis was chosen. The Monkhorst-Pack scheme and the Brillouin zone integration was 
performed at 8x8x8 k-point meshes (Monkhorst & Pack, 2005). Post-processing of data in this 
paper was done using the Thermo-pw software. We obtained our results by fitting the energy-
volume data to the Murnaghan equation of state(Murnaghan, 1944).  The energy- volume data 
were obtained as follows; the volume of the simple cubic structure of ScF3 was deformed by a 

single parameter ε such that the lattice spacing was defined as α= a0= (1+ε) where a0  was the 
theoretical equilibrium parameter that was extracted from Materials project database (Jain et al, 
2013).  We then fitted to the Murnaghan equation of state a series of total energy valuesfor 21 
sets of volumes with ε  ranging from -0.05 to +0.05 in steps of +0.005.  
 
3.  Computational results in comparison to experimental and other studies. 
 

Table 1: Indicating the calculated values of the lattice parameter, Bulk modulus, the first 
pressure derivative the Volume per atom, minimum energyand the Bond lengths of ScF3 using 
different exchange correlations (XC) 
 

Exchange 
Correlation 

 

Reference a0 (
Å) 

|Dev| 
Of  
a0  

B0 
(GPa) 

B0
'

 Volume 
per atom 

(Å3) 
 

E0 (Ry) Bond 
length 
Sc-F 
(Å) 

PBE This work 4.06 0.74% 92.8 4.31 16.67 -335.73 2.03 

PBESOL This work 4.01 0.05% 99.7 4.48 16.15 -332.10 2.01 

PW91 This work 4.05 0.49% 93.9 4.31 16.50 -336.62 2.03 

PZ This work 3.96 1.74% 110.2 4.67 15.62 -328.87 1.98 

WC This work 4.01 0.05% 99.4 4.48 16.17 -334.18 2.01 
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EXPERIMENT a 4.03 - 88.8  16.36  2.01 

PBE b 4.03 0.00% -  16.36  2.02 

HF-DFT PBEO b 4.05 0.49% -  16.61  2.03 

LCAO method b 4.03 0.00% -  16.36  2.01 
  
aCody et al, 2014 
b(Zhgun et al, 2012) 
 
From table 1 above, the lattice parameter in the 5 XCs agreed well with the experimental data 
and past DFT calculations apart from PBE and PZ which gave a high and low lattice constant.  
The bond lengthswere similar in each simulation and agreed with the experiment. It is generally 
well known that PBE and PZ predict ground state properties that are higher and lower 
respectively compared to the other exchange correlation functionals (Wu et al, 2004). The lattice 
constant obtained in PBESOL and WC agrees perfectly to the experiment one thus making DFT 
a standard tool in material prediction. 
 
Conclusion 
The aim of this work was to illustrate the inclusion of computational methods in materials 
science. Sincemany studieshave gone a long way to illustrate the effectiveness of DFT as a 
standard tool in materials modelling, we employed the theory in predicting the ground state 
properties of cubic ScF3.The calculated values of the lattice parameters, bulk modulus and the 
bond lengths were in agreement with values obtained from other related studies. From our 
calculation, DFT as a tool was able to complement the experimental approaches as well as 
predicting other properties like the volume per atom and total energy of cubic ScF3.  Since the 
tool worked on our system, it could equally work on a different one since the theory remains 
unchanged. We state clearly that the future of science lies in simulation due the prowess 
exhibited byDFT in this study and that of other related scholars. 
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