TOXICITY AND EFFICACY OF AQUEOUS CRUDE EXTRACTS FROM ALLIUM SATIVUM, CALLISTEMON CITRINUS AND MORINGA STENOPETALA AGAINST LEISHMANIA MAJOR

Ву

Dr. Geoffrey K. Kinuthia: gkinuthia@daystar.ac.ke
Daystar University, Department of Science & Technology

Co- authors: Christopher O. Anjili (KEMRI)., Ephantus W. Kabiru (KU)., Elizabeth M. Kigondu (KEMRI)., Johnny M. Ingonga (KEMRI) & Nicholas K. Gikonyo (KU)

THE 4th INTERNATIONAL CONFERENCE AT KABARAK UNIVERSITY

DATE: 18th JULY, 2014

INTRODUCTION

- (a) The Leishmaniases: protozoan infectious tropical diseases;
- (b) Forms: CL, VL, MCL, cutaneous PKDL (Sudan);
- (c) Causative agent for CL in Kenya: L. major
- (d) Vectors:
 - Phlebotomine sandflies (Africa);
 - Lutzomyia sandflies (S. America)
- (e) Conventional drugs: Pentostam; Glucantime; Amphotericin B; Pentamidine; paromomycin; Miltefosine (oral); a combination of paromomycin & pentostam.
- (f) Control: Insecticides; repellants; avoid termite mounds, appropriate clothing, bed nets, and herbal extracts (rural areas).

STATEMENT OF THE PROBLEM

- Leishmaniases Standard Drugs: expensive, highly toxic, prolonged treatment and hospitalization;
- Leishmaniasis is common in poverty stricken areas: Costly drugs may not be readily available; hence victims opt for herbal therapy that have not been tested;
- Drug resistance: Delayed healing, high costs and frustrations;

JUSTIFICATION

- Need for alternative affordable, less toxic, and readily available local drugs;
- Search for cheap herbal substances that can cure leishmaniases in poverty stricken areas is inevitable;

HYPOTHESES

- (a) The aqueous crude extracts are not efficacious against *L. major in vitro and in vivo* when compared to the standard leishmaniasis drugs;
- (b) The aqueous crude extracts are not toxic against *L. major* promastigotes and vero cells *in vitro* when compared to the standard leishmania drugs;

MAIN OBJECTIVE

To determine the *in vitro* toxicity and *in vivo* efficacy of aqueous crude extracts from garlic vegetable (*Allium sativum*), African moringa tree (*Moringa stenopetala*), bottle brush tree (*Callistemon citrinus*) against *L. major*.

SPECIFIC OBJECTIVES

- (a) To determine the minimum inhibitory concentration (MIC) of the crude extracts against *L. major* promastigotes;
- (b) To establish the *in vitro* toxicity levels of aqueous crude extracts against *L. majo*r promastigotes and vero cells;
- (b) To establish the *in vivo* activity of aqueous crude extracts against *L. major* in BALB/c mice;
- (c) To determine the parasite burden in the spleens of groups of infected BALB/c mice that were treated with the test extracts and the controls (Leishmaniases drugs and phosphate

MATERIALS AND METHODS:

(I) GARLIC CLOVES: ALLIUM SATIVUM L

Plate 1: Bulbs and cloves of A. satium L.

Garlic bulbs

Garlic cloves (heans)

(II) BUTTLE BRUSH TREE FLUWERS: CALLISTEMON CITRINUS (CURTIS) SKEELS

Plate 2: C. citrinus tree.

MORINGA STENOPETALA (BAKER F) **CUFODONTIS**

Young leaves on a branch

HERBAL MATERIALS

Collection: Baringo, Nakuru, Nairobi

Identification: University of Nairobi Botany

Dept.

Drying: At KEMRI, room temp; brittle, constant wt.

Grinding: Powder, using electric mill;

Aqueous crude extracts:

Extracted as described by Delahaye et al.
 2009;

EXPERIMENTAL ANIMALS

• 6 – 8 weeks old inbred BALB/c mice;

 Obtained from ILRI and housed in KEMRI (Nairobi);

LEISHMANIA MAJOR PARASITES

Leishmania major: Strain NLB-144;

Obtained: IPR-Karen;

Culture medium: Schneider's Drosophila

medium + 20% heat inactivated FBS +

antibiotics + antifungal;

IN VITRO BIOASSAYS

Anti-Promastigote and cytotoxicity assays:

- The minimum inhibitory concentration (MIC) was determined as described by Wabwoba et al., 2010;
- Toxicicity levels (IC50) of extracts against promastigotes and vero cells was determined as described by Wabwoba et al., 2010;
- The viability of treated promastigotes and vero cells was determined as described by Mosmann formula (1983);

IN VIVO EXPTS: BALB/c MICE

(a) Infection and treatment of BALB/c mice

Footpads: inoculated subcutaneously with promastigotes;

Infected mice: treated with extracts and controls (pentostam, liposomal amphotericin B, and PBS);

Route of administration: oral, ip.

Lesions sizes: vernier caliper.

(b) Estimating parasite burden in the mice spleens

Spleen index, LDU, and total LDU were determined as described by Bradley Kirkley (1977).

DATA ANALYSIS

- SPSS for windows at 5% level of significance.
- One way ANOVA (F test):
 - (i) Used to compare the lesion sizes in groups of mice under different treatments.
 - (ii) Compare LDU and total LDU for mice under different treatments.
 - (iii) Multiple comparisons of the individual treatments were done using both Tukey HSD and Games-Howell *post*

RESULTS

Plant extracts yields:

Table 1: The percentage yields of the plant extracts obtained from the study plants.

Plant species	Part used	Code	Initial wt (g)	Yield (g)	Yield (%)
A. sativum	Bulbs	Α	50	9.290	 18.59
C. citrinus	Flowers	В	50	8.790	17.58
M. stenopetala	Leaves	С	50	3.200	6.40

Extracts toxicicity, MICs and viabilities of promastigotes:

Table 2: Showing IC_{50} of test extracts, MIC and viability (%) of *L. major* promastigotes after *in vitro* treatment with the extracts or the controls.

	MIC Code	IC ₅₀ (mg/ml)	-log ₁₀ IC (µg/ml)	(pIC ₅₀ scale)	
				_	
Α	3	299.79	-2.48	52.55	
В	5	297.75	-2.47	75.74	
С	5	575.75	-2.76	60.57	
Pent	0.0125	0.26	0.59	18.41	
Amp	В	0.0063	0.82	0.09	12
'					
SIM	-	-	-	81.65	
	B C Pent Amp	A 3 B 5 C 5 Pent 0.0125 Amp B	A 3 299.79 B 5 297.75 C 5 575.75 Pent 0.0125 0.26 Amp B 0.0063	A 3 299.79 -2.48 B 5 297.75 -2.47 C 5 575.75 -2.76 Pent 0.0125 0.26 0.59 Amp B 0.0063 0.82	A 3 299.79 -2.48 52.55 B 5 297.75 -2.47 75.74 C 5 575.75 -2.76 60.57 Pent 0.0125 0.26 0.59 18.41 Amp B 0.0063 0.82 0.09

^a = the concentration of the extracts ranged between 5mg/ml to 0.5mg/ml; ^b = the initial concentration was 100 μ g/ml (0.1mg/ml) serially diluted by a factor of 2.

Table 3: The toxicity of the aqueous extracts measures as IC_{50} (μ g/ml) against vero cells

Test extracts	Code	IC ₅₀ (μg/ml)	
Aqueous:			
M. stenopetala	Α	1306.68	
C. citrinus	В	467.11	
A. sativum	С	2105.93	
Control drugs:			
Pentostam	Pento	108.58	
Liposomal Amphotericin B	Д	mph B	

Note: The initial concentration of the test extracts was $1000\mu \text{g/ml}$ while that of control drugs was $100~\mu \text{g/ml}$

Effects of orally administered aqueous extracts on *L. major* caused footpad lesions:

Figure 1: The foot pad swelling after oral treatment of *L. major* infected BALB/c mice with test aqueous extracts.

Effects of intra peritoneally (ip) administered aqueous extracts on *L. major* caused footpad lesions:

Figure 2: The foot pad swelling after intra-peritoneal treatment of *L. major* infected BALB/c mice with aqueous extracts and control drugs.

Estimation of *L. major* amastigotes in the splenocytes of treated mice

Table 4: The average spleen index ± SE, LDU ± SE and total LDU ± SE for treated infected BALB/c mice.

Test extracts parasite & controls reduction a		Ave spleen		Ave total		%
		Route	index (%)	Ave LDU	LDU (× 1000)	
Aqueous:						
A (M. stenopetala)	oral	0.51 ± 0.14	0.25 ± 0.04	$4.06 \pm 0.$	60 66.96	
	ip ^b	0.54 ± 0.01	0.57 ± 0.05	10.28 ± 2.	02 16.35	
B (C. citrinus)	oral	0.71 ± 0.21	0.10 ± 0.02	2.09 ± 0.	14 82.99	
	ip	0.53 ± 0.03	0.19 ± 0.13	3.05 ± 2.0	02 75.18	
C (A. sativum)	oral	0.42 ± 0.01	0.27 ± 0.01	4.87 ± 0.	21 60.37	
	ip	0.47 ± 0.05	0.33 ± 0.24	6.71 ± 4.	80 45.40	
Controls :						
Pentostam 66.40		ip	0.73 ± 0.19 0	0.18 ± 0.08	4.13 ± 1.10	
Lip amph B	ip	0.61 ± 0.02	0.24 ± 0.02	$4.84 \pm 0.$	38 60.62	
PBS PBS	ip oral	0.54 ± 0.04 0.56 ± 0.06		8.74 ± 5. 12.29 ± 4.		

Figure 3: Parasite burden in spleens of *L. major* infected BALB/c mice post-treatment.

Spienocytes from a mouse treated with PBS

treated with extract B

DISCUSSION

Efficacy of the crude aqueous extracts:

- Allium sativum (Garlic):
 - Active against L. major at 5 mg/ml in vitro; in line with previous studies.
 - Garlic causes apoptosis, cell shrinkage, DNA fragmentation;
 - Sulfur containing cpds like ajoene, allicin (diallyl thiosulfinate), diallyl disulfide - may have had direct inhibitory effect on the *L. major* proms;
 - Reduced the lesions in mice significantly: Garlic causes reepithelialization of wounds and increases loosely packed collagen bundles (Ejaz et al., 2009).
 - Less toxic compared to pentostam and liposomal amphotericin B. (reason why garlic is used as a vegetable).
 - Being active, natural, readily available and less toxic: can be applicable to leishmaniases control.
 - The study showed that garlic had antiprotozoa activity in vivo: reduced the parasite burden in the spleens of infected

DISCUSSION CONT.

Callistemon citrinus (Bottle brush tree):

The aqueous extracts: -

- Oral extracts: reduced the parasite load in the spleens significantly and this compared closely to pentostam and liposomal amphotericin B.
- Oral and ip extracts reduced the L. major caused lesions: - Antiprotozoa activity that reduced the amastigotes hence fast healing;
- Antibacterial activity: killing the bacteria at the wound (lesions) and quickening the healing;
- Efficacy may be attributed to essential oils (1,8 cineole and alpha pinene) that are abundant.
- Slightly toxic when compared to garlic and moringa;
 Toxicity attributable to the essentials oils reported to be moderately toxic.

DISCUSSION CONT.

Moringa stenopetala (African moringa tree):

- Inhibits promastigotes in vitro at 5 mg/ml hence antiprotozoa activity is used as a vegetable in Ethiopia
- Low toxicity: Explains why it is used as a vegetable.
- Extracts stabilized the lesions from week three to four of treatment.
- Properties of M. stenopetala which could have contributed to speedy wound healing were:-
 - Rich in nutrients especially proteins needed to make new tissues.
 - Moringa is known for immune building, antiulcers and antibacterial which may speed tissue healing.
 - Moringa extracts are rich in bioactive antibiotic glucosinolates compounds (Fahay, 2005; Bellostas et al., 2010) -This could explained in vivo inhibitory activity against L. major amastigotes in BALB/c mice spleens, observed in the current

CONCLUSION

- Crude aqueous extract of M. stenopetala ((Baker F) Cufodontis, A. sativum L (garlic), and C. citrinus (Curtis) Skeels are relatively less toxic when tested against L. major promastigotes and vero cells in vitro.
- The aqueous extracts of garlic, moringa and bottle brush were active against *L. major* promastigotes and amastigotes in the splenocytes of infected mice.
- Specifically, aqueous extracts of dry garlic significantly reduced L. major caused foot pad lesions in BALB/c mice when compared to phosphate buffered saline.
- Aqueous bottle brush extracts were active in decreasing the amastigotes in the spleens of infected BALB/c mice.

RECOMMENDATIONS

- 1. More studies on medicinal potential of aqueous crude extracts of *M. stenopetala, C. citrinus, & A. sativum* in order to get a cheaper way of controlling cutaneous leishmaniasis in poverty stricken rural areas;
- 2. Use of garlic in the diets should be emphasized in leishmaniasis endemic areas because as immuno-modulators they stimulate immunity to clear *Leishmania*.
- 3. Using *Moringa* tree as antileishmanial and as a vegetable should be emphasized in leishmaniases endemic Baringo County of Kenya, where *Moringa* stenopetala plant grows naturally.
- 4. Use of bottle brush tree as a herb should be promoted in Kenya. It is proving to have a broad spectrum activity.

ACKNOWLEDGEMENTS

The authors of this paper would like to thank the following:

- Scientists and researchers from KEMRI-Nbi
 Leishmania laboratory for their technical advice
- Kenyatta University and University of Nairobi for their technical advice and their active roles in this project.

THANK YOU